Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

ICAS-98-6,4,4

A98-31680

FLYING OBJECTS — AN OBJECT ORIENTED TOOLBOX FOR MULTIDISCIPLINARY
DESIGN AND EVALUATION OF AIRCRAFT

A. Schneegans, O. Kranz
PACE Aerospace Engineering and Information Technology GmbH, Germany

Abstract

The following paper presents an innovative de-
velopment project of a software program family for
aircraft modelling, design and evaluation. The overall
goal is to provide for a consistent data model of the
aircraft geometry and the associated attributes. The
data model shall supply the information to a toolbox
of evaluation and design sub-processes. This pro-
gram architecture shall form the basis for a family of
program applications which share one single data
model. Software design drivers which determine the
underlying architecture include the demand to
smoothly integrate arbitrary data structures into a
,single project hierarchy, the automatic communica-
tion of relevant changes in the data structure and the
providence of uniform visualisation techniques,
nevertheless keeping up the access performance.
The introduction of an object and attribute oriented
data management, a commercial 3D geometric mod-
eller and powerful interfaces for the graphical pre-
sentation give the basis for the program system. First
derivatives of the program family include a mission
performance calculation application with flexible input
filters for legacy data, a cabin configuration tool for
automated generation of 2D cabin drawings and 3D
visualisation of the cabin interior as well as the first
version of a comprehensive design and evaluation
tool which shall replace existing, conventional sys-
tems.

1. Introduction

The assessment of the technological, operational

and economic viability of an aircraft is crucial in to--

day's aviation industry no matter whether an aircraft
manufacturer, a systems supplier, an operator, a
research institution or a certification authority is con-
sidered. The ability to evaluate aircraft performance,
cost as well as the impact of new technologies is a
basic requirement to all of them.

The scope of related tasks extends from market
and competitor analysis, sensitivity studies and trade-

Copyright © 1998 by ICAS and AIAA. All rights reserved

off investigations to the matching of engines and air-
frames as well as to conceptual design studies: the
latter mostly in case of aircraft manufacturers. A mul-
tidisciplinary approach is required to accomplish
these tasks. Other requirements stem from ongoing
trends in the industry towards concurrent engineering
within a computer network environment. The ability to
communicate within this environment is essential.

The FLYING OBJECTS development project has
been started intending to establish an object oriented
framework of design and evaluation relevant pro-
cesses operating on widely adaptable aircraft com-
ponents™. Overall development goal is to provide for
a consistent data model of the aircraft geometry and
the associated attributes like weights and aerody-
namic characteristics and to easily supply this infor-
mation to a toolbox of evaluation and design sub-
processes, see Figure 1. This program architecture is
the basis for a family of program applications which
share one single data model.

User Specific Application

Evaluate i?féf?ééi

 FLYING OBJECTS Kernet

Figure 1: Toolbox Architecture

Besides the improved flexibility from the compu-
tational point of view, the underlying architecture with
its open data & programming interfaces as well as
the flexible parametric geometric model are a clue
feature for the design and the calculation of a wide
variety of aircraft configurations, see Figure 2. While
not inherently providing every specific analysis

21st ICAS Congress
13-18 September 1 998
Melbourne, Australia

Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

method which might be required for the calculation of
unconventional aircraft configurations, the system is
able to grow with the data and the methods provided
by the user.

configuration assessment (cabin, kinematics) is a
detailed description of the outer and inner geometry.
An object oriented modeller (ACIS™) provides for
solid modelling and analysis capabilities.

FLYING OBJECTS Kernel

%

CAD-Programming
interface

Figure 2: Configuration Flexibility

Following proven concepts of object oriented
software design, the aircraft components are de-
scribed in a highly generic way, providing for flexible
data structures and interfaces. Attributes may be
assigned to dynamically created. The ability to freely
define aircraft components along with their attributes
and the access to a powerful database allow for con-
figuration flexibility and quick initialisation of standard
aircraft configurations.

In order to calculate the desired component
attributes (weights, aerodynamic parameters, etc.)
the component and attribute dependencies or break-
downs can dynamically be defined. This concept
allows the design disciplines to share a common data
structure and to handle differing analysis levels. In
case of weight estimation methods, a wing outer shell
could provide for sufficient data for simple statistical
methods while more sophisticated methods would
require the definition of structural details. Dynamic
adaptation of the geometry and the associated
assembly structure gives the required flexibility.

Elementary calculation or design procedures are
embedded in adaptable program flows, which give
quick access to singular functionality but also to
complex processes like aircraft synthesis, parametric
studies or optimisation procedures. The combination
of specific functions to complex processes and the
ability to also access each of them alone - provided
the required information is available - gives maximum
user support and allows for the integration into exist-
ing work procedures.

A basic requirement for high analysis levels, the
modelling of unconventional configurations and for

Figure 3: Geometry Interface

The abstraction of basic geometric properties
gives the ability to model the desired configurations
with manageable effort. Although shipped with a
powerful 3D modeller, the software architecture
allows the integration of FLyiNG OBJECTS into existing
CAD environments, provided the CAD system offers
appropriate programming interfaces, see Figure 3.
Alternatively, the built-in modeller offers several data
export facilities.

2. System Design Drivers

The design of the FLYING OBJECTS system ar-
chitecture is driven by several needs. These include
the access to a database, the offering.of import fa-
cilities for legacy data and the providing of a power-
ful, but easy to use graphical interface (GUI). The
GUI shall provide the mechanisms one is used to
from PC programs, e.g. add or remove functions
applied to project components.

Other design drivers include the extensibility with
respect to detailing of functional components or com-
pletely new functionality. FLYING OBJECTS is intended
to become an entire suite of applications, covering
areas like conceptual aircraft design, detailed geo--
metric modelling of the airframe structure for com-
prehensive analysis with respect to space allocation,
aerodynamics, weights and structure as well as
operational and economic evaluation.

The aim of the FLYING OBJECTS development is
to provide a consistent program architecture which
can be tailored to the customers specific needs by
simply adding or removing program modules. For

Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

example, a mission performance module will be able
to communicate with all other components which are
envisaged in the scope of the program suite. For this
reason it necessary to provide for uniform data input
and viewing facilities. The design drivers sum up as
in the following:

= Only provide the information the user needs.

= Give quick access to data visualisation and
manipulation.

= Offer powerful, but uniform visualisation
techniques.

- Utilise modern data input techniques (drag and
drop).

~ Offer data templates for storage of often used
data structures.

= Store program session information for easy
continuation of the work.

7 Give instant access to project model or calculation
processes as well as to the database.

= Give transparent access {o the calculation
methods, e.g. in case of a performance
calculation routine which uses either drag and

, thrust data or alternatively performance data given
by the aircraft manufacturer

These demands lead to an architecture, which
aims to integrate proven engineering algorithms and
strategies for aircraft modelling with modern software
technology, giving a new software basis for engi-
neering applications and ensuring the further devel-
opment and the extensibility of the program system.

3. General Architecture

The design drivers lead to an architecture which
is based on the tree representation of a project. A
FLYING OBJECTS project is built up as a hierarchy of
tree nodes, which represent the functional units of the
program version. This architecture aliows for man-
agement of parent / child relationships and offers the
basis for intelligent data navigation, see chapter 4.
The tree gives instant access to the entire project

functionality and is capable of integrating the data- -

base handling, too. This allows the user to freely
define and edit project components and simulta-
neously browse and reference database items. Thus,
different members of the FLYING OBJECTS program
family only differ in the number and the detailing of
the project tree branches as well as in the subjects
they address. The two base elements - project tree
and the database - are explained in the following.

3.1 Project Definition

The definition of a FLYiING OBJECTS project is
schematically explained on the example of the flight
mission calculation module. The content of a mission
project is briefly illustrated in figure 4.

Figure 4: Project Components

The illustration displays the objects which will
belong to a project file. Each object has to be re-
garded as a shell for data and program functionality.
Every flight mission project will consist of four main
objects which reside directly under the project root.
These will be the node for the missions, the node for
the supply of aircraft geometric and configuration
data, the node for the weight breakdown of the air-
craft under investigation and the node for access to
the database.

The project will refer to database elements (e.g.
engine card decks, drag data, specific range data)
through the settings in the mission nodes. There will
be two possibilities to link to the database. One will- -
be to integrate a reference into the project, pointing to
the database. This policy will allow for lean project
files and quick initial program loading.

The other way of referring to the database will be
to save the data with the project into one file. Al-
though slower in loading, this feature would permit to
exchange an entire project just by distributing the
project file without the need to share the database.

Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

The missions node will allow to specify several
missions within one project. This node will be the
starting point for functions which apply to all defined
missions. The missions node will allow to initiate the
calculation of several missions at a time, it will pro-
vide diagrams for the comparative plotting of mission
specific data or the generation of comparative tables.

Children of this node will be the missions them-
selves. The mission nodes will provide the function-
ality for calculation of a single mission and generation
of the respective diagrams and tables. Clicking on the
mission segments will give access to segment spe-
cific information and processes, as there are ma-
nipulation of the segment parameters or calculation
of single segment performance. The number and
order of the mission segments will be highly modifi-
able; the mission will be sub-dividable into an arbi-
trary number of segments:

The order (or more general, the hierarchy) will
only be restricted by ‘real-world’ constraints, so that
the beginning of a mission should start with either a
take-off or a climb segment, but not with cruise or
descent segments. The aircraft geometry and con-
figuration node will allow the user to input geometric
and configuration data, which are important for
‘mission and drag calculation. The parameters com-
prise the reference wing area, the lever of the outer
engine for engine out drag calculation etc. The data
will not be derived from a geometry but will only be
input by the user. The implementation will be per-
formed by attaching an extendable ‘info Class’, which
will be responsible for providing aircraft data. This
implementation strategy allows for the integration of a
geometry module for a more comprehensive program
version, which would derive geometric parameters
from a 3D geometry based on the ACIS™ modeller,
but nevertheless offer those parameters through a
compatible ‘Info Class’.

Alike the aircraft node, the weight breakdown will
be implemented as editable values in case of a
mission performance software; however, when rely-
ing on a detailed aircraft geometry, the weight break-
down will initialise its nodes through triggering weight
estimation methods which operate on the 3D aircraft
geometry.

Although not really a part of it, the database
node will be a compulsory element of each project.
This node is the gateway to data import facilities as
well as for the database browsing functionality. The
reason to implement this node within the project
structure is to provide the same visualisation tech-
niques as for the project specific nodes. Both project
and database will share the same user interface,

identical editing capabilities and the same diagram or
spreadsheet interfaces. Detailed information on the
structure of the FLYING OBJECTS database is given in
the following chapter.

3.2 Database

In its first version, the FLYING OBJECTS database

is organised as a directory structure with sub-directo-
ries for specific contents and ASCI| files for the data
storage within these sub-directories. It will be pre-
sented transparently to the user as one single data-
base containing the entire set of data, that is system
wide as well as user owned data. Future program
versions will substitute this database by commercial,
relational or object-oriented database (e.g. Oracle™,
Poet™, ObjectStore™,).

The database files will be marked as writeable or
non-writeable, depending on the access rights which
will be controlled by the operating system. This fea-
ture will allow to simultaneously use (read) the sys-
tem and user database for calculation purposes, but
give manipulation authority (write) only to specific
users.

The FLYING OBJECTS program suite defines its
own internal database file formats (e.g. engine per-
formance, aircraft performance and drag data) The
file format will not only include the data, but will pro-
vide a consistent header which describes the range
of application of the files. In case of engine perform-
ance data, the header will give quick information
about the covered altitudes, mach numbers and
thrust settings, providing for automatic checking of
the applicability to an entire mission or a single
mission segment.

For flexible integration of new data file formats
and the necessary filters, a base import class will be
defined. Integration of new file formats will thus con-
sist in deriving a specific class for the new format,
maintaining the same interfaces for data visualisation
and storage to a database file.

4. Project & Data Management -

A key feature of the FLYING OBJECTS software
family is the internal data management. Overall de-
sign driver for the architecture was the requirement to
handle very heterogeneous data structures but nev-
ertheless provide uniform access interfaces and data
navigation functions. Regarding the functionality
which is addressed by the FLYING OBJECTS software
suite, the program system with all modules will have

Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

to handle data such as 3D geometric, CAD-suitable
models or numeric data like weight estimation
methods, aerodynamic flow solvers and of course,
performance calculation routines.

The program modules need to communicate
changes of their parameters to one another; e.g. the
geometry module will provide information for aerody-
namic and structural weight methods, or simply sup-
ply its information to a two- or three-dimensional
viewer. The data structure must be capable to dy-
namically grow and keep up a satisfying perform-
ance. All theses requirements lead to a design, which
can be named ‘object and attribute oriented, hierar-
chical data management’.

4.1 Object and Attribute Oriented Data Management

According to the above demands, design con-
straints were defined as in the following:

> Flexible: Arbitrary data structures smoothly fit into
one project structure

" Powerful: Data structures have easy and
standardised access to all attributes

=+ Consistent: Relevant changes of the data struc-
tures are automatically communicated to the ob-
jects

- Transparent: Data structures can access arbitrary
viewers for optimal presentation to the user and
comfortable manipulation of data

- Fast: Data management allows for high
performance access to necessary information

This lead to an architecture, where standardised
objects act as shells around the data structures
which shall be managed. These objects provide for
functions which handle parent-child relations and the
navigation within the hierarchy. The objects have a
standardised interface for persistence (storage to a
file or a stream), which gives the basis for a flexible
project loading and storage mechanism. In order to
implement specific functionality, e.g. the performance
calculation routines, import filter functions or visuali-

sation routines, the objects can be extended with

‘object attributes’.

These attributes may be simple values (strings,
real or integer numbers) but also complex object
oriented data structures (classes). The attributes are
responsible for the functionality which is normally
understood as a program. These object attributes are
stored as templates and can be assigned to more
than one object.

Functionality which has a more global character
is integrated as so called ‘base attributes’. These
base attributes act as managers for object atiributes
and maintain a list of objects which have been
assigned the respective attributes. This feature gives
two main benefits:

Data navigation cannot only be performed by .

going up and down the object tree hierarchy, but also
by referencing to a base attribute and asking for ob-
jects, which attributes are managed by the base
attributes. This allows for direct and quick data
search in a dynamic project structure. In case of
weight chapter breakdown, objects which are as-
signed a weight can hence be collected without the
need to browse the entire, potentially complex project
structure. :

Standardised, program wide functionality can
easily be accessed by any project component which
is added. This applies e.g. to the data viewers, which
are not specifically designed for one single object.
The diagram viewer is thus capable of displaying
diagrams from database files (performance bro-
chures, engine card decks) but also diagrams which
are generated from the project tree components,
such as the mission node or the node responsible for
the entire set of defined missions.

F ﬁ\\f)/(ObjectManagement

Figure 6: Object-attribute relations

Typical examples for base attributes are the data’
viewers, which comprise the project tree itself, the 2D
and 3D graphics viewer, the spreadsheet viewer and
the diagram viewer. The object-attribute relations are
symbolically depicted in Figure 6. The objects in this
figure are all real aircraft components; however, they
can also be non-geometric components like mission
segments within a mission calculation.

Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

The objects are connected through two-way
arrows, symbolising double-linked lists, which enable
the navigation within the project tree. The circles
representing the object attributes are not only
assigned to a single object. A circle which appears in
every object attribute list might for example stand for
the description of the objects name, hierarchy posi-
tion and the associated icon for the project tree. The
displaying of the objects with this attribute within the
project tree is then managed by the correspondent
circle which appears in the base attribute list.

The links between the objects, their attributes
and the associated base attributes give high flexibility
with respect to the addition of project components
and their implicit management. On the other hand,
manipulation of the project tree implies complex up-
dates of the link relations in order to maintain the
consistency within the project. This management is
performed automatically in the background.

4.2 Project Loading and Storage Mechanism

An important issue within a program system is
the loading and storage of project files / structures. If
a high flexibility with respect to the definition of an
arbitrary number of project components is demanded,
the persistence mechanism has to cope with varying
project structures. Moreover, if requirements such as
the restoring of project session settings or the man-
agement of generated diagrams have to be met, the
loading / storage procedure has to be highly stan-
dardised.

By defining a virtual storage function in the ob-
Ject attribute abstract class, the persistence of a proj-
ect is realised by browsing the project tree (base
attributes) and subsequently calling the standardised
‘save’ function which triggers the object attributes to
write their incorporated data to a single data stream
and thus to afile.

How does a standardised ‘save’ function know
about the details of an object attribute? This is ex-
plained by a key feature of the C++ programming
language. The object attributes are ‘derived’ from a

common base class. This means, that by calling the .

uniform function as defined in the abstract base
class, the function which is really executed is the one
defined in the object attribute which knows about the
data it needs to store. The loading of a project is sim-
ply the inversion of this process. The project file
contains identifiers for the objects which have been
stored; their ‘constructors’, that means their initialisa-
tion functions, are subsequently called in the order of
appearance in the file.

This mechanism is highly flexible with respect to
the contents of project. it will thus be possible to store
the reference to a database entry. When reloading
the project, the reference will be resolved and the
data be read out of the file. Alternatively, the data file
itself could be send to the file stream. The identifiers
in the project file would then tell the ‘constructors’ of
the object attributes to interpret the following lines as .
the data which was originally stored in the database.
A clear benefit will be, that the user can decide
whether to vote for a lean and thus quickly accessible
project file with references to the database, or to de-
cide for the advantage of having an ‘all in one’ stor-
age of the project, which would make the data trans-
fer to remote computers very comfortable.

It is obvious that by moving the authority of data
storage from a central unit to the components, the
extension of the system with new functionality and /
or additional project components (new flight mis-
sions, for example) imposes no changes to the proj-
ect management. The central persistence unit only
handles the scheduling of the save-actions according
to the structure of the project tree.

5. Graphical User Interface

The graphical user interface (GUI) is character-
ised by a clear and standardised structure. It consists
of a few main components, which give access to the
entire program functionality. A project tree displays
all project components, which are added to the proj-
ect via component template dialogues. Standardised
data and component viewers provide for 2D and 3D
graphic visualisation, spreadsheet editing capabilities
for data sets and textual output presentation as well
as diagram generation facilities. Context dependent
‘right-mouse button’ menus present the specific func-
tionality for each component, ‘drag and drop’ allows
for quick and comfortable project initialisation.

5.1 Project Tree

No matter what subject a project component will
be related to, it has its representation in the project

tree. Unlike the data and component viewers, see. .-

chapter 5.3, which are only available for suitable
project components, the project tree is the central
visualisation and access gateway for the entire pro-
gram functionality.

The project tree visualises the hierarchy between
the components and sub-divides the project into its
functional units. Additionally to standard, but ‘old-
fashioned' user-interface elements like the menu bar,

Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

the project tree provides context-related menus by
clicking on the right mouse button. These menus give
access to the functions which apply to the specific
tree node. Double clicking on a project node allows
for expansion or folding of the underlying node
structures. With growing project size, this feature
ensures a comfortable project overview.

The project tree also supports ‘drag and drop’
technique. For example, entire flight mission tem-
plates or mission segments are added from compo-
nent template dialogues via drag and drop. Also,
basic aircraft configurations like conventional aircraft
or canard layouts can be initialised by dragging of
appropriate template icons. The initialisation is then
performed on the basis of defaulted values or data-
base entries; however, the parameters can be edited
at any time.

5.2 Component Templates

The FLYING OBJECTS software family will store
components (symbolised as nodes in the project tree)
and even complex component hierarchies as tem-
plates. Those templates will aliow for quick initialisa-
tion or adaptation of the project. The templates will be
presented in ‘template gallery dialogues’ as depicted
in Figure 7, which illustrates cabin item templates.

Figure 7: Template gallery

In analogy to the depicted cabin items which are
organised within a folder tab, mission segments of

the flight performance module will themselves form a

folder tab with entries for generic mission segments
(take-off, climb, cruise, step-climbing cruise, etc.).
The templates will be presented as coloured icons
and will provide a bubble help on mouse focus, de-
scribing the purpose of the template through a help
text.

Appiication of a template to’the project will be
performed by dragging the template to the project

tree or a suitable viewer (2D or 3D) and dropping it
on the targeted position. Validity checks will ensure a
consistent definition; in case of a mission segment,
e.g., the placement of a take-off segment directly
behind a cruise segment would trigger a warning or
error message. In other words, the template knows
about valid drop sites and / or drop constraints which
have to be fulfilled. The parameters of a template will _
be defaulted by the template or initialised through a
database reference, relieving the user of tedious
initialisation.

5.3 Data & Component Viewers

Additionally to the project tree, which is used by
all project components, FLYING OBJECTS provides for
standardised data viewers. The viewers comprise a
2D sketcher, a 3D OpenGL viewer (see Figure 8), a
spreadsheet and diagram viewer.

Figure 8: 3D Viewer

The viewers are organised within a folder, resid-
ing right hand side of the project tree. The window
division between project tree and viewer folder is
customisable through a vertical slider. The viewers
are attached as ‘attributes’ to the project nodes, see
chapter 4.1. As a consequence of this attribute hand-
ling, the viewer folder only displays those viewers
which are associated with the active (marked) project
node. Again, as in the case of context dependent
‘right-mouse’ button clicks, only the relevant informa-
tion is presented to the user.

The 2D sketch viewer is wused within
FLYiNG OBJECTS for any kind of 2D non-diagram
presentation which requires interactive modification
and needs drag and drop capabilities. In case of the
performance software, this viewer will be used for the

Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

presentation of the mission profile, either for one
single mission when clicking on a mission node
within the project tree or for the entire set of missions
within a project when pointing on the flight missions
node.

The viewer not only provides a graphical sketch
of the mission which is defined in the project tree, but
gives interaction capabilities for mission segment
modification and visualisation of the mission status.
For example, a red sketch of a mission segment
might indicate that this segment is not fully defined
with respect to the required input and is thus not valid
for calculation.

The viewer is a ‘drop-site’ for the template gal-
lery, just like the project tree. Thus, the user is able to
access the mission segment functionality either by
right-mouse button click on the node in the tree or on
the respective segment line in the 2D graphics.

Figure 9: Diagram Viewer

The diagram viewer in Figure 9 displays project
node specific diagrams, e.g. SAR-curves when
clicking on the mission or any kind of data when
pointing on a database entry.

The graphics output of the diagram library are
‘piped’ into the diagram viewer; this allows for dis-

playing several diagrams into one worksheet. The

diagrams are automatically generated with a pre-set
formatting; however, the user has the possibility to
entirely customise the look of the diagrams. This
includes the formatting of line types, colours and
thickness as well as the insertion of arbitrary text, the
generation / deletion of legends, insertion of bitmap
logos (Enterprise logo) etc.

The diagrams can be exported via output filters
to the following file formats:

= Postscript (a vector file format)

= Windows Metafile Format (a vector / bitmap file
format)

= DXF (a vector file format)
% Portable Bitmap Format (a bitmap file format)
= All X-Window bitmap formats

Depending on which project node currently has
the focus, the diagrams might display thrust curves
for a single engine or compare the curves of several,
selected engines, if the engine-database node would
be the active one. By using the same diagram viewer,
the generation of diagrams from a data stream can
be generalised and thus be applied to arbitrary com-
ponents. The extension of the functionality for future
program versions will thus cause relatively little effort.

The spreadsheet viewer serves both for data and
result visualisation as well as for editing / manipula-
tion purposes. This viewer is available for imported
data files such as drag data, thrust data or aircraft
performance brochures as given by the aircraft
manufacturers. The viewer performs certain input
checks, for valid digit number input for example. The
user has the possibility to add / remove data sets,
insert or remove rows and columns, mark regions,
copy or remove regions, etc. Resulting changes in
the data sets can be checked with the diagram. For
output presentation, the spreadsheet viewer provides
for pre-built tables and formatting.

6. Program Family

The software architecture as described in the
previous chapters can be regarded as the core of an
engineering workbench, which is capable of providing
for the necessary components for several applica-
tions or program versions around aircraft assessment
and design. Core elements of the system are the
object & attribute oriented data management system,
the project tree and the viewers for 2D, 3D, spread-
sheet and diagram visualisation.

In the first development
FLYINGOBJUECTS project, three main application do-
mains have been identified. For aircraft mission per-
formance, a program version with a highly flexible
mission calculation module has been developed.
FLYINGOBJECTS- MiSsion gathers the required input
data either from drag data and engine cad decks or
from aircraft manufacturers performance brochures.

phase of the_-

Copyright © 1998, by the International Council of the Aeronautical Sciences (ICAS)
and the American Institute of Aeronautics and Astronautics, Inc.

Import facilities for several manufacturers formats are
provided.

The second project derivative addresses the
automated layout of cabin interior items and the gen-
eration of the necessary drawings and tables. The
cabin module is characterised by its easy handling
and a high performance. Besides two dimensional
cabin layout plots, three dimensional shaded models
of cabin items and interior geometry are provided.

The last program version reflects the integrative
character of the system. FLYINGOBJECTS Design
provides for a 3D, component based aircraft model,
analysis methods and interfaces for all relevant de-
sign disciplines and processes for conceptual design
which can be applied to the defined aircraft geometry.

These first three applications show the potential
of the presented architecture and the prove the con-
cept which intends to provide for application specific
views on a consistent data model. It is intended to
extend the application of the FLYINGOBJECTS core
system to other engineering domains.

Bibliography

A. Schneegans, Ch. Haberland, M. Kokorniak, B.
Domke. An Object Oriented Approach to Conceptual
Aircraft Design through Component-Wise Modelling.
ICAS-96-1.3.1, Sorento, 1996.

	00001.PDF.pdf
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009

