Copyright © 1998, by the International Council of the Aeronautical Sciences (ICAS)
and the American Institute of Aeronautics and Astronautics, Inc.

A98-31672

ICAS-98-6,2,3

ROUTING ALGORITHMS FOR REAL-TIME MISSION MANAGEMENT

D J Allerton and M C Gia

College of Aeronautics
Cranfield University, UK

Abstract

Digital Terrain Elevation Data (DTED) is widely used
in Terrain Reference Navigation (TRN) for terrain
avoidance, terrain following and mission planning.
This paper describes the use of TRN methods applied
to real-time mission management to provide dynamic
routing between way-points during a mission.

The DTED is converted to an oct-tree to compress the
terrain and to provide fast access algorithms needed in
searching functions to locate obstacles in the terrain
database. Locational codes are introduced which are
based on Morton ordering to provide pointerless tree
structures and to simplify the transformations between
oct-tree and quad-tree representations of terrain. The
terrain is searched to extract the vertices of obstacles
and form a visibility graph of possible routes through
the terrain. An optimal route is computed according to
specific mission constraints.

The paper includes examples of real-time routing
running on a PC using a public domain DTED. The
use of oct-trees allows a trade-off between the
resolution of the route and the extraction time. Several
examples are included in the paper to illustrate the
capability of the method and the performance of the
routing algorithms.

Introduction

Advances in Terrain Reference Navigation® have

resulted from three development in avionics:

s the digitisation of terrain elevation data from
satellite imagery and modern surveying techniques

e the use of GPS, providing aircraft position to an
accuracy better than 10m for military users

e the availability of airborne computer systems
combined with avionics sensors, to provide on-
board storage of terrain data and sufficient
processing performance to access the terrain
database and compute safe and efficient routes.

Large regions of the world have been digitised in terms
of elevation data, typically at regular intervals of 50m
to 100m to a vertical accuracy of 5m to 10m. In
terrain following and terrain avoidance, it is possible
to compute the flight path to avoid the terrain by
extracting the part of the DTED® in the immediate

Copyright © 1998 by ICAS and AIAA. All rights reserved

flight path of an aircraft. However, for mission
management, it may be necessary to search a large part
of the DTED to extract an optimal route between two
points in the DTED.

Raw DTEDs pose two major problems for aircraft
navigation. Firstly, the volume of data may prove
prohibitive in terms of the real-time computing
requirements to access this data to extract routes. For
example, a DTED covering a region 10000 Km by
10000 Km, with grid points spaced at 100m, will
contain 10'® points. Searching and sorting operations
involving this number of points is impracticable for
real-time navigation. Secondly, there is no topological
or structural information when the data is organised as
regular grid points.

This paper focuses on two aspects of Terrain Reference
Navigation: the organisation of the DTED to facilitate
efficient access operations to extract obstacles in the
DTED and secondly, algorithms to extract an optimal
route through the terrain in real-time.

For navigation, real-time routing implies the ability to
produce a series of straight line segments through the
terrain passing through a series of way-points within a
few seconds. With the availability of digital data links
for aircraft, e.g. JTIDS®, it is possible to update the
mission requirements during the mission and for each
aircraft to be able to re-route its mission in real-time.
The actual optimisation criteria depends on the
mission, but may include the flight path distance,
exposure to threats or data links, harshness of the
dynamics imposed on the aircraft and pilot and
minimisation of time-on-target errors.

Data Structures for DTEDs

In routing an aircraft through a terrain, an aircraft can

climb to avoid obstacles or alternatively, it is possible
to manoecuvre laterally. Although terrain is defined in
three dimensions, once obstacles are extracted which
are in the direct path to the target, the search for routes
through the terrain becomes two dimensional.

Quad-trees“>**® have been used to represent two
dimensional regions of obstacles. The region is divided
into four equal quadrants. If the characteristics of all
the elements in a quadrant are common, then all the

21st ICAS Congress
13-18 September 1998
Melbourne, Australia

Copyright © 1998, by the International Council of the Aeronautical Sciences (ICAS)
and the American Institute of Aeronautics and Astronautics, Inc.

essential information is known about that quadrant and
there is no need to divide the region any further.
However, if the elements of a quadrant are not
identical, the quadrant is then sub-divided into four
quadrants and the process of subdivision is repeated
until a quadrant exhibits this common characteristic or
until the resolution of the subdivision matches the
resolution of the DTED. The small region shown in
Figure 1 can be decomposed in quadrants as shown in
Figures 1a and 1b. The quadrants are numbered in a
regular format as shown in Figure lc, resulting in the
quad-tree in Figure 2. In this example, the region of 64
possible squares is represented by 28 nodes.

O)
4567 8 91011 13141516 24252627

Figure 2 Quad-tree Organisation

This method can be extended to three dimensions
using oct-trees™®. The terrain is decomposed into
eight sub-octants and this recursive processes of
subdivision continues until an octant contains common
information. The simple shape in Figure 3a is
decomposed into the terrain given in Figure 3b and the
corresponding oct-tree given in Figure 4.

(@) ®)

Figure 3 Oct-tree Example

L]

]
50 51 52 53 54 55 56 57

Figure 4 Oct-tree Organisation

There are two advantages with representing terrain in
this form. Firstly, it is possible to exploit redundancy
in the database. This leads to compression of the
DTED; unnecessary topological information is
discarded in the oct-tree. Secondly, the levels of the
tree correspond to different levels of detail or
resolution, with the most detail given by the leaf nodes.
In other words, there may be sufficient detail to
provide routing information at a higher level of the
tree where there are less nodes to process.

Tree Structures

By organising the terrain as a tree structure, access to
the tree nodes is proportional to log,N, where N is the
number of nodes in the DTED. This is particularly
important because the extraction of routes in the
terrain involves searching processes. Moreover, it is
possible to summarise information about sub-tree
nodes within a node of the tree, for example, the
highest elevation of the nodes contained in the region
defined by the sub-tree.

The disadvantage of tree structures is that each tree
node contains information defining both the node and
also pointers to the sub-trees, adding 'to the storage
requircments for the tree. However, Allerton and
Gia® 1D have shown that pointerless tree structures
can be used to represent terrain. This approach
provides a significant level of compression of the
terrain and, with a suitable choice of node ordering,
can reduce many oct-tree operations to quad-tree
operations, in other words, reducing three dimensional
tree access operations to two dimensional operations.

Encoding and Decoding Oct-trees

One method of encoding both oct-trees and quad-trees
is the use of Morton ordering®?. This is illustrated in
Figure 5 for three small quad-trees. Each subdivision
of the tree introduces an extra digit of Morton coding.
For example, the shaded cell in the oct-tree in Figure
5(c) is given by the locational code 213. This code
represents a value where each digit represents a
weighted power of 4. In this case, the location code at

Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

co-ordinate (3, 5) is given by 2 x 4%+ 1 x 4! +3 x 4° =
390.

P00 po1 P10 P11 HOOH01 110111

po2 po3 P12 P13 p02 1103 104 105

P20 P21 p30 P31 120121 f30 31

P22 P23 P32 P33 P22 123 132 133

(00 po1 P10 P11 Boo Bo1 B10 811

poz pos pa2 Bagor pos p12 p13

20 221 230 P31 B20 P21 P36 831

P22 p23 P32 P33 lﬂl P23 32 g33

61 2 3 4 5 6 7
@ ®) ©

Figure 5 Quad-tree Locational Codes

In the general case, the three-dimensional co-ordinate
{1, J, K), of an oct-tree of size 2" x 27 x 2 is given by:

I = cpi2™ + 2™ 4 ... + o2
J = dp12™ + dp2™P L + dg2°
K = en_12n'l + en_22n'2 R, + 6020
where the locational code Q is given by:
Q = gn-18"" + 28”2 ¢ ...l ... + qo8°
and the coefficients qj, are given by:
Qo = €27 + dp2® + 2P

{ =n1n2n3, 1 3,2,1,0}

The primary advantage of using Morton ordering is
that the vertical downward projection of any oct-tree
node has the same locational code as an equivalent
quad-tree. Moreover, the derivation of these projection

~codes reduces to simple logical operations. The
encoding of a terrain array into a terrain oct-tree
involves the mapping of an array co-ordinate (I, J) to
the corresponding locational code and includes the
encoding of scaled elevation data in the corresponding
locational code.

In the standard oct-tree method, a voxel is defined as a
unit length cube in the I, J, K directions. For the
terrain oct-tree model, the length of a cube in the K
axis direction depends on the scaling factor of the
elevation. In effect, the introduction of a scaling factor
divides the terrain into horizontal bands. A fourth
parameter S is added to represent the size of the leaf
node. -

A single 3-D locational code can represent an area of
terrain surface by its three dimensional co-ordinates
and size information. Unlike Gargantini's method, an
octant is encoded with a locational code which is one
of the set of digits {0, 1, 2, 3, 4, 5, 6, 7}, which can be
represented by three bits. If the eight voxels belong to
the same octant, they are grouped together by setting
the fourth bit of the locational code. The size of a node

N A W N = O

is obtained by detecting the occurrence of these flag
bits as the tree nodes are accessed.

For standard oct-trees, only odd values occur along the
K axis in grouping sub-octants. In other words, the
upper layer of an octant has underlying sub-octants {4,
5, 6, 7}. For terrain oct-trees, by exploiting the
property that the projection of a terrain surface
generates a complete quad-tree, the grouping process
can be performed in quadrants instead of octants. This
allows terrain surface voxels to be merged if the IJ
plane projection of four blocks, with equal K values,
occurs in the same quadrant of the corresponding
quad-tree.

Using this method to represent an oct-tree, a block of
terrain surface with equal K values is uniquely defined
by the size of the block and the co-ordinates of its NW
corner. Assuming a DTED given by 2" x 2° grid points,
the locational code of each leaf node of side length 2
consists of n digits where the k trailing digits contain a
flag bit, and the leading n-k digits contain the
locational codes defining the path from the root of the
tree. Note that the merging of leaf nodes is based on
the quadrants of the projection plane and therefore, the
locational code along the path is represented by the
digits 0, 1, 2, and 3. The third and fourth bits of each
digit are reserved for the scaled value K and the size
value S respectively. After interleaving the indices I, J,
K and S, the locational code is given by a value formed
from the set of hexadecimal digits {0, 1, 2, 3, 4, 5, 6,
7,8, C}.

The oct-tree is organised as a linear list where each
clement represents a leaf node of the tree. Each node is
defined by a single integer known as a locational code,
as shown in Figure 6. Using 32 bit locational codes,
the co-ordinate of the node, the sizé of the node and its
clevation are encoded in this single word.

!
BT

s&lkt&]jslix 57

|j7|i7 :6|k6|j6|i6 sslm]jslis ululjalu safia

j3]i3 xz}kzljz]

o [0 0 1

Qi

REERECEEECEE R RE DO CEREEDEREE

g T T

8 c
Q2 ulololoolooo oooooooxolll 1Io|o!onl|lo]o

°waJ

Figure 6 Locational Code Organisation

7T T

0

A further advantage of Morton ordering of the nodes is
that terrain can be represented by an oct-tree but the

Copyright © 1998, by the International Council of the Aeronautical Sciences (ICAS)
and the American Institute of Aeronautics and Astronautics, Inc.

two dimensional quad-tree can be extracted from the
oct-tree by means of straightforward projections which
reduce to logical operations on locational codes.
Moreover, extraction of the DTED co-ordinates is fast
and simple. In many applications, operations to be
performed on a tree may be derived from DTED co-
ordinates, for example, in determining a straight line
to detect obstacles in the direct path. Similarly, it is
necessary to provide transformations between DTED
co-ordinates and a node address. Operations on the
DTED where it is necessary to swap between DTED
spacc and tree-space include neighbour finding
(locating the nearest obstacle), straight-line path
formulation in terms of tree nodes and distance
measurements between two tree nodes.

Flight Path Planning

The flight path planning involves two phases®>(%.
Firstly, a search space is generated containing all the
possible paths between a start point and a goal point
which avoid the obstacles. It is likely that this search
space will contain a considerable number of paths. The
second phase is to locate a path which satisfies specific
mission constraints. It is assumed that the obstacle
space is statict 19D,

The extraction of an optimal route can be based on the
minimisation of an objective function defining the
‘cost' of the path. Although this information can be
embedded in the DTED by pre-processing®®@® in
order to reduce the real-time searching, the obstacle
space is likely to alter with changing threats and
minimum clearance height above the terrain.
Therefore, the methods described in this paper are
based on real-time path extraction, constrained by
mission requirements and consequently, no pre-
processing of the DTED is assumed to assist the
mission routing system.

The set of obstacle nodes is extracted from the oct-tree
based on constraints of threats, distance, terrain
clearance or other mission requirements. This forms a
quad-tree of obstacle nodes, based on altitude®”, as
shown in Figure 7. A straight line is generated, using a
modified Bresenham line generation method® based
on tree nodes, as shown in Figure 8. The tree nodes
intersécting this straight line are extracted between the
start point and goal point. Each node of this line is
checked against the list of obstacles and when an
intersecting node is encountered, it is added to the list
of intersecting nodes. It is possible that more than one
component of a point along the direct will intersect the
same obstacle node. For example, in Figure 8, obstacle
node 21 encloses four point elements, whereas node 15
encloses two point elements. ’

The obstacles list is a sub-set of the quad-tree
representing the navigation space and may contain
several isolated regions. However, the list of obstacle
nodes does not provide any useful topological
information, particularly connectivity or boundary
conditions. For example, in Figure 7, the obstacle
quad-tree contains 26 nodes but it is not clear if node 1
or node 26 belong to the same connected region.

GOAL
@

14

14 sbrEl e 15/ 16
=t 10
1)12| 13 17] 18 |49
20 '
21 2 | 23 | 25
24|26
@
START
Figure 7 Obstacle Nodes
GOAL
s
START

B Line Elements of the Direct Path
Collision Nodes

Figure 8 Collision Detection

For each node in the list of intersecting nodes, the
node is expanded to detect the boundaries of the
intersecting obstacle. The obstacle leaf node is formed

Copyright © 1998, by the International Council of the Aeronautical Sciences (ICAS)
and the American Institute of Aeronautics and Astronautics, Inc.

by computing the locational codes of the neighbouring
nodes in four directions. This is a recursive operation
which is completed when a boundary node is reached
which does not have any neighbouring nodes in the list
of obstacle nodes. The size of the neighbouring node
may be different from the size of the expanded node
and in this case, the search process is repeated until a
neighbouring node is located which is of equal size.

If this searching process does not locate a
neighbouring node, then cither a smaller neighbouring
node may exist or the node is a boundary node. The
required node may be contained in a merged node at
an upper level of the oct-tree. However, the extraction
of a covering node is straightforward from the logical
structure of the locational codes. This is shown in
Figure 8, where the expansion of node 21 encounters a
boundary node in the south direction, connects to
nodes in the north and east directions and detects node
20 from further inspection of nodes in the west
direction.

Whenever a neighbouring node is located, it implies
that further expansion is needed in that direction,
otherwise the node is a boundary node. After all four
main directions are explored, the boundary type of an
obstacle node is obtained.

As each neighbouring node is encountered, it is
expanded until a boundary node is detected. However,
as this recursive search is also applied to neighbouring
nodes in all directions, it is necessary to avoid re-
visiting nodes which are established as boundary
nodes. Figure 9 shows the expansion of the obstacles
nodes from node 21 to locate the boundary nodes.

GOAL
(]

L]
START

Figure 9 Obstacle Region Expansion

Figure 10 shows the resultant way-points for this
obstacle, where this process has been applied to nodes
21, 17 and 15, the obstacle nodes between the start
point and the goal point. The vertices are obtained
from the north west corner of the boundary nodes in
the quad-tree.

GOAL
[]
® ®
—
v
}_'y' v v v
e 1)
" 13 v
v \4
. v
v v
B vivli ®
@
START

@ Diagonal Direction Neightbour of Vertex Node
v Vertex Node
Figure 10 Way-point Extraction

The Visibility Graph

After expansion of all the obstacle nodes, the complete
list of possible way-points, known as the visibility
graph, is formed as shown in Figure 11.

goal-1
[J

Figure 11 Navigation Space Visibility Graph

Clearly, not all the obstacles are likely to be
encountered in the route, as shown in Figure 11, where

Copyright © 1998, by the International Council of the Aeronautical Sciences (ICAS)
and the American Institute of Aeronautics and Astronautics, Inc.

the route from the start point to goal-1 is independent
of obstacles B and D.

If a connected graph is found between the start point
and the goal point, other way-points can be eliminated
which are not in the direction towards the goal point,
as shown in Figure 12, where a visibility graph of 14
way-points is extracted from the navigation space
containing 32 way-points.

goali2

gdal-3

Figure 12 Partial Visibility Graph

This method is similar to the methods used in most
path planning problems, where a visibility graph is
constructed from a list of polygonal obstacles. The
difference for flight path planning is that the possible
obstacles are limited to those close to the direct path.
During the collision check, w*(w-1)/2 pairs of points
are examined where w is the number of points. The
time complexity is therefore proportional to w”.

To search the complete visibility graph for the optimal
path would require exhaustive searching. For a large
number of points in the visibility graph, this is clearly
impractical and a heuristic version is used, based on a
variant of Dijkstra's algorithm®, known as the A*
method®”. Figure 13 shows the visibility graph, with
the corresponding search tree in Figure 14, which is
generated to extract the optimal path. The graph of 7
nodes contains five possible paths from the start point
to the goal point.

As the flight planning phase must be performed in
real-time, it is necessary determine if a new flight path
exists within a few seconds which requires the
extraction of the obstacles, derivation of the visibility
graph and computation of the set of mission way-
points. '

Figure 13 Visibility Graph

Figure 14 Search Tree for a Visibility Graph

In addition to the advantages of terrain compression
afforded by oct-trees, the hierarchy of the tree
representation allows the tree to be accessed at
different levels of detail. In other words, the flight path
extraction method described in this paper can be
executed at any level of the tree. Clearly, there are less
nodes towards the root of the tree and the algorithm
will therefore execute faster but consequently, will
produce a coarser route. Indeed, routes through the
terrain which are evident at the resolution of the leaf
nodes, may be obscured at higher levels of the tree.

Despite this limitation, the oct-tre¢ method offers one
particular advantage in real-time mission management
which is the ability to trade-off time and resolution. By
applying the algorithm to a specific terrain for
randomly selected routes, the routing times were
measured for tracks of different lengths at ail levels of
resolution. These results showed that it is possible to
predict the performance of the routing algorithm with
an acceptable degree of certainty and then apply this
knowledge to the routing algorithm.

The real-time method predicts the time to route and
selects a tree resolution to be able to route the mission
within a few seconds. The time to the first way-point is
then known and the remainder of the mission (from
the second way-point) is then re-routed at a higher
level of resolution as the mission proceeds.

Copyright © 1998, by the International Council of the Aeronautical Sciences (ICAS)
and the American Institute of Aeronautics and Astronautics, Inc.

Results

Table 1 shows the performance of the routing
algorithms for a 33 MHz 486 PC using two terrain
databases at different levels of tree resolution from
level 1 (the coarsest) to level 5 (the most detailed). The
DTED files are based on two regions provided by the
UK Ordnance Survey using their 1:50000 Digital
Terrain Model (DTM) data, containing 36201 height
values for a 30 Km square 'tile'. The source file is
reduced to 512:512 grid points to simplify the oct-tree
encoding process. The original DTED contains over
256000 grid points at 100m spacing. Each oct-tree is
organised on 5 levels.

The DTEDs reduce the number of DTED points to
6448 and 16717 nodes respectively at 100m resolution.
At Level 1, the DTEDs reduce to 64 and 253 nodes at
the coarsest level. The number of obstacles reduces
with the level of the oct-tree by over a factor of 10 from
110 and 250 obstacles. The number of way-points
varies from 20 to 65 and the possible number of path
segments is less than 1000 for these DTEDs reducing
to 50 and 130 respectively at level 3 of the tree. The
overall mission routing times are shown in Figures 15
and 16 for the respective DTEDs as a function of the
number of quad-tree nodes extracted from the DTED.

1T secs

nodes

il + + t {
0 2000 4000 6000 8000

Figure 15 Mission Planning Time DTED-A

In addition, a series of random routing tests were
applied to the mission planning algorithms, in order to
validate the method and also to assess the algorithm
performance. Table 2 shows the average time to extract
the way-points, to construct the visibility graph and to
extract the resultant path from the visibility graph.
Clearly the performance depends on the number of
potential way-points and Table 2 shows that a 33 MHz
486 PC is capable of generating a new route within 5
seconds, provided the resultant obstacle space contains
less than 30 way-points. ,

40 +
35 1
30 4
25 4
20 4
154
10 4

nodes

0 t t 1 {
4] 5000 10000 15000 20000

Figure 16 Mission Planning Time DTED-B

The major time is taken to construct the visibility
graph. For both DTEDs this is less than 3 seconds at
level 3 or below but reaches 36 seconds for one of the
DTED:s at the leaf node resolution. The time to locate
the way-points and to extract the path from the
visibility graph is insignificant in comparison with the
time to construct the visibility graph. However, these
figures illustrate the concept of imitial routing at a
coarse level followed by subsequent routing of the
remainder of the mission at a finer level of detail.

The collision check is based on a binary search of the
elements and the performance is therefore O(log,N)
where N is the number of collision nodes. The time to
check each collision is determined by the number of
points along the path segment. If the average number
of points checked is N, the cost of a collision check is
O(N x log,N) comparisons.

Most of the time in collision checking is spent in
constructing the visibility graph. The complexity of the
visibility graph is O(w?) where w is the number of
nodes in the graph. In the general case, the total cost of
constructing a visibility graph of w way-points is O(w*
x (N x log,N)).

Dyer®® has shown that a region 2™ x 2™ of a quad-tree
represented by 2" x 2% grid points generates
approximately O(2™7 - m) nodes. Alternatively, the

number of nodes is O(p + n) where p is the perimeter- --

of the region in points. Assuming the expanded
obstacle nodes are single connected and the obstacle
region corresponds to an area N x N, then for an
obstacle region 2™ x 2™, 2™ < N and the number of
nodes accessed to form the obstacle region is of the
order of its perimeter. The cost of the expansion
function is O(4*"! x (p + n)), where d is the depth of
the quad-tree.

Copyright © 1998, by the International Council of the Aeronautical Sciences (ICAS)
and the American Institute of Aeronautics and Astronautics, Inc.

Figures 17, 18 and 19 were captured from a real-time
implementation of the mission management system
running on a 33 MHz PC. Figure 17 is routed at layer
3 for a quad-tree of 2101 nodes. The routing algorithm
detects a path to the right of the hill shown by the
vertices of the quad-tree. Figure 18 shows the same
initial route with a new route computed during the
mission. Figure 19 shows the same terrain and start
and goal points at layer 2 where the quad-tree contains
628 nodes. Note that the number of way-points
increases from 13 to 22, producing a different route.

Conclusions

A real-time mission planning system has been
developed for a PC using a proprietary DTED. The
DTED is converted to an oct-tree and during the
mission, a quad-tree of obstacles is extracted from the
oct-tree. Routing around the obstacles is achieved by
detecting collisions between the current aircraft
position and the goal point. The resultant visibility
graph is explored to locate the set of way-points to
satisfy minimum mission criteria, such as overall
distance or exposure to a threat.

The use of oct-trees allows the DTED to be organised
as a hierarchical data structure with the terrain data
stored at different levels of resolution. Oct-trees afford
a reasonable level of compression in comparison with
raw terrain data and by the use of Morton ordering, the
oct-tree is stored in an efficient format which avoids
the use of pointers. Operations which are common to
TRN applications, such as the detection of obstacles,
location of a neighbouring node, detection of obstacle
boundaries and routing algorithms reduce to tree
traversal algorithms which are proportional to log,N
where N is the number of nodes in the oct-tree.

The routing is actually performed on quad-trees which
are extracted from the oct-tree to produce an
immediate obstacle space according to clearance
criteria. It is straightforward to transform between
terrain co-ordinates and locational codes, and vice-
versa and operations to locate and merge items in the
DTED reduce to simple logical operations on
locational codes. The path planning method reduces
the size of the search space by establishing a partial
visibility graph, omitting regions of terrain which are
independent of the possible set of way-points.

The oct-tree resolution can be varied during the
formation of the tree and by limiting the access to the
higher nodes of the tree, allows a trade-off between
resolution of the routing algorithm and the time to
route. In practice, routes were extracted within five
seconds using a 33 MHz PC at the lowest level of the
tree for a 50 Km square region. Simulation studies of

random routing to exercise the mission management
algorithms show that it is possible to predict the time
to route a mission as a function of path distance and
the level of the oct-tree, suggesting that this
information can aid the misston management
algorithms in the selection of the most appropriate
level of the oct-tree to perform the routing.

The methods outlined in this paper provides a low-
level set of DTED operations, including database
conversion, oct-tree generation, quad-tree extraction,
tree access operations, transformation between tree co-
ordinates and terrain co-ordinates, neighbour finding,
visibility graph extraction and optimal route
extraction. Subsequent optimisation can be applied at
this final stage to tailor the mission management
software to mission specific requirements.

Acknowledgement

The authors would like to thank the UK Ordnance
Survey for providing the DTM files.

References

1. Priestley N, Terrain Reference Navigation, IEEE
Position, Location and Navigation Symposium
1990, pp. 482-489.

2. Henley A J and Milligan J, Applications of Terrain
and Feature Database to Aircraft Operations, RIN
& DGON Digital Mapping and Navigation
Conference, London, Nov 1992.

3. Fried W R, Principles and Simulation of JTIDS
Relative Navigation, /JEEE Trans. Aerospace and
Systems, AES-14(1), pp. 76-84, 1978.

4. Gargantini I, An Effective Way to Represent
Quadtrees, Communications of the ACM, Vol. 25,
No. 12, Dec 1982, pp. 905-910-

5. Gargantini I, Detection of Connectivity for
Regions by Linear Quadtrees, Computers and
Mathematics with Applications, Vol 8, No. 4,
1982, pp. 319-327.

6. Klinger A and Dyer C R, Experiments in Picture
Representation Using Regular Decomposition,
Computer Graphs and Image Processing, Vol. 5,
No. 1, Jan 1976, pp. 68-105.

7. Chen H H and Huang T S, A Survey of
Construction and Manipulation of Octrees,"
Computer Vision, Graphics, and Image
Processing, Vol. 43, No. 3, 1988, pp. 409-431.

8. Gargantini I, Linear Octtrees for Fast Processing
of Three-dimensional objects, Computer Graphics
and Image Processing, Vol. 20, No. 4, Dec 1982,
pp- 365-374.

9. Allerton D J and Gia M C, The Application of
Oct-trees in Airborne Terrain Guidance Systems,

Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

RIN & DGON Digital Mapping and Navigation 18. Schwartz J T and Sharir M, A Survey of Motion
Conference, London, Nov 1992. Planning and Related Geometric Algorithms,

10. Gia M C, Design of Data Structures for Terrain Artificial Intelligence 37, 1988, pp. 157-169.
Reference Navigation, PhD Thesis, College of 19. Chan Y K and Foddy M, Real Time Optimal
Acronautics, Cranfield University, May 1994. Flight Path Generation by Storage of Massive Data

11. Allerton D J and Gia M C, Oct-tree Terrain Bases, /EEE National Aerospace and Electronics
Modelling Methods for Terrain Reference Conference 1985, pp. 516-521.

Navigation Systems, The Aeronautical Journal, 20. Lizza C S and Lizza G, Path-Finder: An Hueristic ~
pp. 157-164, May 1996. Approach to Aircraft Routing, /EEE National

12. Morton G M, A Computer Orientated Geodetic Aerospace and Electronics Conference 1985, pp.
Database and a New Technique, Ottowa, Canada, 1436-1443.

1966. 21. Meng A C, Flight Path Planning Under

13. Brook R A, Solving the Find-Path Problem by Uncertainty for Robotic Air Vehicles, /EEE
Good Representation of Free Space, IEEE National Aerospace and Electronics Conference
Transactions on Systems, Man and Cybernetics, (NAECON) 1987, pp. 359-366.

SMC-13(3), 1983, pp. 190-197. 22. Newman W M and Sproull R F, Principles of

14. Mitchell J S B, An Algorithmic Approach to Some Interactive Computer Graphics, McGraw-Hill,
Problems in Terrain Navigation, Artificial Inc., 1978.

Intelligence, Vol 37 No 1-3 1988, pp. 171-201. 23. Dijkstra E W, A Note on Two Problems in

15. Kambhampati S and Davis L S, Multiresolution Connexion with Graphs, Numerische Mathematik
Path Planning for Mobile Robots, JEEE Journal of 1, 1959, pp. 269-271.

Robotics and Automation, vol. RA-2, No. 3., Sep 24. Rich A, Artificial Intelligence, McGraw-Hill, Inc.,
1986, pp. 135-145. Sth ed, 1986.

16. Lozano-Perez T and Wesley M, An Algorithm for 25. Dyer C R, The Space Efficiency of Quadtrees,
Planning Collision-Free Paths Among Polyhedral Computer Graphics and Image Processing 19, 4.,
Obstacles, Communications of the ACM 22,10, August 1982, pp. 335-348.

> Oct 1979, pp. 560-570.

17. O'Dunlaing C and Yap C K, A Retraction Method
for Planning the Motion of a Disc, Journal of
Algorithm, 6, 1982, pp. 104-111.

Layer | Nodes | Obstacles | Way-points | Segments Tep T Tep Total Distance
sec sec sec sec km
5 6448 110 48 480 0.37 11.39 0.37 12.13 36.8
4 2938 72 22 150 0.22 2.53 0.28 3.02 36.0
3 940 37 11 50 0.11 0.50 0.11 0.72 36.2
2 253 16 7 26 0.06 0.17 0.11 0.33 37.3
1 64 8 6 20 0.06 0.11 0.06 0.22 427
a) DTED A
Layer | Nodes | Obstacles | Way-points | Segments Twp T Tep Total Distance
. sec sec sec sec km
5 16717 250 65 844 0.77 35.97 1.39 38.13 36.8
4 8659 182 40 348 0.66 11.48 0.22 12.36 36.1
3 3217 78 20 130 0.22 2.36 0.17 2.75 36.2
2 961 37 11 50 0.11 0.55 0.11 0.77 36.5
1 253 16 7 26 0.06 0.11 0.11 0.28 37.2
DTED B

Table 1 Experimental results of applying the flight path planning algorithm

Copyright © 1998, by the International Council of the Aeronautical Sciences (ICAS)
and the American Institute of Aeronautics and Astronautics, Inc.

Way-points Top Ty Tsp Total
sec sec sec sec
1- 10 0.06 0.33 0.60 0.99
11-20 0.17 1.98 0.71 2.86
21-30 0.44 3.90 0.71 5.06
3140 0.44 7.97 0.71 9.12
41-50 0.55 11.76 1.35 14.12
51-60 1.81 30.06 1.81 33.67

Table 2 Average Routing Time based on 10000 Random Tests of 10 Oct-trees

Top (sec) Time to locate the way-points in the obstacles quad-tree
T (se0) Time to construct the visibility graph

Tsp (s€0) Time to search a path in the visibility graph

Total (sec) Total time to route

Distance (km) Path Distance from the start to the goal points

layer 3 terrain danger area ahove - [
Start = (247,36) Goal = (131,249)
Haypoints 13. Path segnents = 54,

(233, 259)

Figure 17 Routing at Level 3 - Routing Time 3.1 seconds

10

Copyright © 1998, by the International Council of the Aeronautical Sciences (ICAS)
and the American Institute of Aeronautics and Astronautics, Inc.

layer 3 terrain danger area above -
Start = (196,116) Goal = (50,198)
Haypoints = 13. Path segmnents = 60.

0,00

Figure 18 Dynamic Re-routing at level 5 - Routing Time 13.8 seconds

layer 2 terrain danger area above -
Start = (252,31) Goal = (146,212)
Hauypoints 22. Path segnents 116.

O3 00 0 0D

€293,299)

Figure 19 Routing at level 2 - Routing Time 3.0 seconds

11

	00001.PDF.pdf
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011

