Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

A SOFT DYNAMIC PROGRAMMING APPROACH FOR ON-LINE

A98-31670

AIRCRAFT 4D-TRAJECTORY OPTIMIZATION

Patrick Hagelauer
Systems Engineer

AEROSPATIALE
316, Route de Bayonne, 31060 Toulouse, FRANCE

Abstract

During the last decade, Flight Management Systems
(FMS) have been introduced on board modern aircraft to
reduce operational costs, and flight profiles have been
optimized in order to minimize fuel and time-related
costs. Today, the integration of next generation Flight
Management Systems in the future air traffic
management (ATM) environment requires the
development of new capabilities and among them, on-
line real-time 4D trajectory generation has become
mandatory.

This paper presents a method based on dynamic
programming to generate optimal 4D-trajectories. This
approach is applied to a partial formulation of the
problem which deals with what is accomplished today
by empirical means on modern transport aircraft.
Numierical simulations, which consider realistic case
studies for an AIRBUS A340 aircraft, show that this
approach leads to a reduction in global costs and that
computer time is compatible with on-board application
requirements.

Considering the future evolution of air navigation
requirements (FANS, Free Flight concept), a more
complex formulation of the optimization problem, which
includes multiple and window-type time constraints, is
considered. The previous approach is extended leading
to an increase in the solution search space which is then
compensated by adding heuristics based on specialized
knowledge and by using neural networks to accelerate
aircraft performance calculations..

1. Introduction

In the future air traffic management (ATM)
environment, precise time control of aircraft flight
trajectories is expected to provide a significant increase
" in capacity while maintaining the present level of safety.
This requires the development of new capabilities for
next generation on-board Flight Management Systems
(FMS) among which flyable 4D-trajectory generation,
meeting Air Traffic Control (ATC) constraints, will play
an important role. These constraints are typically
altitude or speed constraints at specific waypoints of the
flight plan (figure 1). Recently, time constraints have

r

been introduced to increase capacity and reduce delays.

More particularly, the efficiency of the Hub and Spoke

network structure, which has been adopted by many

airlines, is related to the ability to meet tight arrival time

constraints and significant savings can be expected by
generating on-line minimum cost 4D flight trajectories.
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Figure 1 : Aircraft trajectory and constraints

However, on-line generation of optimal 4D-
trajectories within the aircraft performance limitations
and satisfying the different ATC constraints is a very
delicate problem. Already 4D trajectories, allowing the
control of a wumnique crossing time (AT-type time
constraints) at a particular waypoint of the flight plan,
are generated on board modern long range aircraft
(Liden 1994). However, existing solutions do not deal
efficiently with this problem. Furthermore, current
systems are unable, today, to deal with multiple time
constraints or with more sophisticated time windows
such as AT OR BEFORE or AT OR AFTER constraints.

The general 4D-trajectory optimization problem can
be formulated as an optimal control problem. This
approach has been studied extensively over the past
twenty years (Williams and Knox 1991). However,
realistic path constraints as imposed by ATC have not
been considered in these analyses which have remained

far too theoretical.

More recently, mathematical programming
approaches have been considered and have proven to be
effective in dealing with the different constraints
(Hargraves and Paris 1987, Betts and Cramer 1995).
However, these algorithms use gradient information for
the search of a local optimum. As pointed out in most of
these studies, the realistic model of an aerospace vehicle
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typically consists of tabulated aerodynamic and
propulsion data and smoothing techniques necd to be
introduced. However, smoothing data without changing
the physical meaning remains a difficult problem.

In this paper, a discrete formulation of the problem is
proposed and the corresponding optimal control problem
is solved in a (non-gradient) forward dynamic
programming framework. The global optimum is
achieved and the different constraints are treated
directly by search space restriction. Heuristics based on
aircraft performance limitations and expert knowledge
are introduced to limit the size of the search space.
Computation time is further reduced by the use of neural
networks to compute the costs associated with each
decision step in the search process. This leads to an
approach referred to, in this paper, as Soft Dynamic
Programming (SDP) and could be introduced, as a
practical solution, in future Flight Management
Systems.

2. Mathematical Formulation of the Flight
Trajectory Optimization Problem

Flight Trajectory Optimization Problem

Aircraft Equations of Motion

Starting with a point-mass model, and assuming
small flight path angle and no vertical acceleration,
aircraft motion in the vertical plane is described by the
following dynamics :

X = (V+Vy)cosy 1)
h=Vsiny )
m=—f(T,h, V) 3

where x is the range, h the altitude, V the airspeed, Vy
the horizontal component of wind speed, m the mass, f
the fuel flow rate, T the thrust and y the flight path
angle.

The aircraft model also involves the evaluation of
drag D(V,hm), lift L(V.hhm) and thrust T(V,h,m)
represented on figure 2.
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Figure 2 : Force diagram

In steady flight conditions, these variables satisfy the
static aircraft equilibrium equations :

L-mgcosy=0 )
T-D-mgsiny=0 &)

Performance Index

The cost function conmsidered in the optimization
problem represents the Direct Operating Cost (DOC).
The DOC is defined as the cost of the consumed fuel
plus other costs related to flight time and is written :

DOC = FUEL + CI * TIME

where FUEL and TIME represent fuel burn and flight
time over a given ground distance. CI, the so-called Cost
Index, is a fuel equivalent cost for time. It is a selectable
parameter which can be used by the airlines to balance
fuel and time costs.

The performance index to be minimized is the cost
of flight for a given ground distance which can be
written in the integral form as :

] =Li(f+ chdt ©

However, since time is a space-related constraint
variable (time constraints are defined at specific points
of space, see figure 1), while the distance to go is a true
independent variable, this performance index can be
rewritten as :

Xf (f+CD

I= X, (V+V)cosy @

where [(V + Vyy) cos 7] represents aircraft ground speed.

General Formulation

A standard formulation of this 4D-trajectory
optimization problem can be proposed as a constrained
optimal control problem :

min | Lfy(x),u(x),x]dx ®

u(x) Jx;
under the following constraints :
Flight dynamics : -
dy
ax = f[y(x).u(x),x] )
Range constraints on the state variable vector :
¥ [y(x), x]< ¥ (%) < yu[¥(x).x] (10)
Range constraints on the control variable vector :
up [y(x)7x]£u(x)£uH[y(X):X] (1 1)
In addition, the solution must satisfy discrete
constraints on the state variables as shown on figure 1 :
Nly(xj).xi] =0 12)
M[y(xj).xjl =0 a13)
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Cruise Phase Optimization

For long range aircraft, the cruise phase constitutes
the main part of the flight and its optimization induces
the major part of the potential cost savings. Current
Flight Management Systems compute an optimum
altitude based on gross weight and speed schedule for a
given aircraft. In a steady atmosphere, the optimum
altitude increases theoretically nearly linearly with
distance as fuel is burned off (Liden 1992a). In the
presence of winds, however, the optimal flight level may
suffer very large variations (Liden 1992b). Aircraft
cruise flight is usually restricted to specific flight levels
assigned by ATC and the problem of optimizing discrete
shifts between flight levels during cruise is economically
worthwhile.

In the proposed approach, transitions from one flight
level to another are treated as discrete events in the
cruise optimization problem. This assumption is
justified by the fact that steps are generally in small
numbers, typically 2 or 3 for long flights, and only
represent a very small portion of the total cruise phase.
With this assumption, altitude evolutions are restricted
to level flight and the altitude state variable can only
take discrete values. When time constraints are
introduced in the cruise phase, the FMS must compute a
new speed profile which will, in turn, have an effect on
the optimal altitude shift points.

The 4D cruise optimization problem therefore
consists in determining the optimal speed schedule and
associated step points satisfying aircraft limitations,
operational constraints and the different time
constraints.

Although aircraft flight dynamics are considerably
simplified for cruise, the representation of the system
involves both continuous (speed) and discrete (altitude)
states which is typical of hybrid-state systems. Because
of the discontinuous nature of the hybrid-state system,
difficulties arise when classical optimization algorithms
are used (Lu et al. 1993). To overcome these difficulties,
the following section describes a Dynamic Programming
approach which generates optimized 4D-trajectories
while overcoming the limitations of previous
approaches.

3. Dynamic Programming Approach
General Mathematical Formulation

The basic approach for solving the optimal control
problem using dynamic programming (DP) consists in
discretizing the problem and applying the classical
Bellman principle of optimality.

The independent variable is written as :

Xk = x0 + k Ax k € [0,....Nx] (14)

the state and control variable vectors are :
y(k) = y(x)
u(k) = u(xy)

the discretized state equations then become :

ykt+D) =fyk)uk)k] kel0,.Nx-1] (15)

and the performance index :
N, -1
J= Y Ly®,.ux)x] (16)
k=0

The bounds on the state or control variables, as well
as the different constraints, are treated directly by state
space and control space restrictions at each decision
step:

y&) € YE) = {y1(k)....yny®} ke[0,..Nx] (17

u(k) € Uk) = {uj(k)....ynu(K)} k€ [0....Nx-1} (18)

At each step k to k+1, and for every state y(k+1),
dynamic programming is performed by applying
Bellman's principle of optimality :

I'fyk +1),k +1]=

i * 19
B [ B 01 B0, 0.1
u, (k) eU(k)

where I*[yi(k),k] represents the accumulated cost along
the optimal path from the initial state to state yj(k).

Application To Cruise Phase Optimization

The discretized equations of motion for cruise flight
can be written as :

tk+1) = t(k) + At(k)
h(k+1) = h(k) + Ah(k) (20)
m(k+1) = m(k) - FUEL [h(k),m(F),M(k)]

When time constraints are introduced (4D-
optimization), the performance index can be simplified.
Flight time is a space-related constraint and can
therefore be eliminated from the performance index
which reduces to

COST = FUEL

For 4D cruise phase optimization, the performance

_index is therefore :

Ny-1

7= FUEL[h(k), m(k), M(K)] Q1)

k=0
where M(k) = Mach number at each step
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FUEL [h(k),m(k),M(k)] = fuel burn from step k to
step k+1 (which depends on altitude, aircraft
weight and Mach number over cach step)

The dynamic programming approach for cruise
optimization is presented on figure 3.

Figure 3 : Search space and restrictions (dashed areas)
for 4D dynamic programming

The dynamic programming formula becomes :
I [tk + 1), h(k+1), %1 ] =
Flonox] @

min
(ti (kb3 (k))eT(k)xH(k)
Ah(k). M (k)€U (k)

FUEL [n; (), m; (<), M ()] |

where H(k) and T(k) represent the allowable search
space at each step and FUEL the fuel burn from state
[ti(k),hj(k),xi] to [t(k+1),h(k+1),xk+1]-

Figure 3 shows a typical search space for a dynamic
programming solution to a 4D cruise optimization
problem in which two time constraints, Tc; (AT OR
BEFORE-type constraint) and Tcy (AT-type constraint)
are considered. At the last step, the costs of the different
solutions satisfying both time constraints are compared.
The flight profile with the lowest cost is then retained as
the optimal cruise profile and proposed to the pilot. Note
that, in this study, dynamic programming is performed
in a forward manner since the performancc index is
state dependent and the final state is not known a priori
(final aircraft weight in particular).

4. Improvement of the DP Solution With Soft
Computing Techniques

Computer based FMS functions should have short
time responses to allow their use in real time conditions
by the pilot : no more than 20 to 30s for non critical
functions on existing FMS's and much less in the future.
This is a critical aspect of the problem even if on-board
processing power has largely increased over the last
decade.

Dynamic programming solution approaches have not
beecn widelv used in practice for time critical
applications duc to the associated computational burden.
In cases where it has been used, heuristics have been
introduced to reduce the search space and the number of
state transitions. However, with the fast evolution of
processing capabilities, several well known techniques
have been recently revisited for their possible
application to real time problems (Williams and Knox
1991). In the present application, computation time is
reduced by on-line limitation of the dynamic
programming search space and the use, at each decision
step, of neural networks for cost evaluations.

Search Space Reduction

Several authors have focused on the design of
minimum cost path through a set of predefined nodes.
The most classical problem in this class is the travelling
salesman problem (TSP) which has been studied
extensivelv. Dumas et al. (1995) have introduced
elimination tests which greatly enhance the performance
of a dynamic programming approach and the
application to the minimization of the total cost for the
travelling salesman problem with time windows
(TSPTW). In this work, the search space and the
number of state transitions are reduced by introducing
elimination tests both a priori and during the execution
of the algorithm. However, the area of application of the
present study enables the introduction of additional
heuristics based on operational considerations and the
knowledge of aircraft performance and limitations.

The search space is primarily defined by pilot
entered parameters, such as considered flight levels
during cruise phase, and by state and control variable
upper and lower bounds. The different ATC constraints
are directly accounted for by limiting the search space to
the acceptable states. These are defined by altitude,
speed and time constraints along the flight. The time
constraints are either hard crossover time constraints or
window type constraints. -

Known aircraft performance and limitations
associated with the aircraft flight envelope must also be
taken into consideration. But, since these limitations are
aircraft state dependent, they can only be dynamically
determined at each step in the search process.

The combination of these different search space and
state transition reduction heuristics improves the
computation time of the dynamic programming
algorithm. However, further improvements can be

-achieved by including operational considerations and

design engineer or pilot expert knowledge. Among these
considerations, the generally observed slowly varying
nature of optimal speed profiles is taken into account to
significantly reduce the search space by limiting speed
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evolutions from one step to another. The introduction of
thesc climination tests reduces the computation time of
the dynamic programming solution by approximately 5.

Computation Time Reduction Using Neural Networks

Computation of costs at the different dynamic
programming steps essentially comes down to aircraft
fuel burn evaluations. Typically these are computed
using aircraft flight dynamics as well as aerodynamic
and performance look-up tables. These repeated
evaluations require an extensive computation effort and
may make the dynamic programming approach
incompatible with on board real time requirements.
When using current fuel burn models, 90% of total
computation time of the DP algorithm is spent on cost
evaluations.

In a preliminary attempt of this study. polynomial
approximations of fuel flow computation for level flight
were introduced. However, the complex nature of the
fuel flow function and the required accuracy were found
to be incompatible with such an approach. Therefore. a
different approach, based on recent soft computing
techniques, has been considered. The proposed solution
introduces a neural network to perform fuel flow
evaluations. It has been shown in previous theoretical
work that neural networks can be turned into "universal
approximators". Cybenko (1989) and Funahashi (1989)
proved that any continuous function can be
approximated on a compact set by a neural network with
one hidden layer. Furthermore, Hornick, Stinchcombe
and White (1989) showed that any measurable function
can be approached with such a network. These results,
however, do not give any information on the ways of
building the network. The general approach therefore
consists in a trial and error method which usually
delivers acceptable solutions.

In this study, a two layer neural network has been
found to be sufficient to provide good fuel flow
approximations. In order to reduce the computation time
of the simulated neural network, the classical sigmoid
activation function has been replaced by a simpler
rational function :

X
f(x) =m (23)

It was then observed that the replacement of the
previous fuel burn computations by a neural network
divides the total computation time of the dynamic
programming algorithm by approximately 8.5.

In this paper, the proposed approach, which
combines a dynamic programming based process with
soft computing techniques for computation time
reduction, will be referred to as Soft Dynamic
Programming (SDP).

Comparison With Existing Solutions

Both the existing and the Soft Dynamic
Programming approaches, for 4D cruise optimization,
have been simulated on a work station for time response
comparisons. Since the problem considered here has
extended objectives, it should requiré much more
processing time. However, the SDP solution contains
this by the introduction of the elimination tests and
other soft computing techniques.

The different solutions have been compared for
reduced complexity problems involving a unique hard
time constraint at a specific crossover point in the flight
plan. In the worst cases, the SDP solution is found to
require three times more computation time than the
existing methods. Additional heuristics have been
considered to further improve the time response of the
SDP solution. A possible restriction of the search space
around a constant cruise Mach solution leading to a
local dynamic programming solution is being evaluated.

5. Simulation Results

Computer simulations have been performed on
several case studies to evaluate the performance of the
SDP approach for cruise phase optimization. The
trajectories were compared with those generated by
optimization functions implemented on existing Flight
Management Systems.

4D _Cruise Optimization With a Unigue Time
Constraint

Existing FMS profile optimization functions only
deal with a unique AT-type time constraint at a specific
waypoint of the flight plan. The optimization algorithms
typically seek to adjust the Cost Index to satisfy the
required time constraint. The existing solutions define
new speed profiles on a frozen altitude profile, therefore
they will be referred to here as fixed altitude profile
(FAP) solutions. The SDP solution, on the other hand,
generates a cruise trajectory with a new optimal speed
profile and a new associated altitude profile. In addition,
the speed profiles generated by the SDP method are not
restricted to constant CI profiles, as they are in the FAP
approach.

Case study description

In this example, we consider a long range cruise
flight with several possible flight levels and a unique
time constraint at the end of the cruise phase. Both the
FAP and SDP solutions have been simulated on a work
station to determine the altitude profiles, speed profiles
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and associated fuel burn based on the aerodynamic,
engine and performance models of an Airbus A340.

In this casc study. wc have considered a 6000
nautical mile (nmi) long cruise flight with no wind at ail
flight levels. The other data for this example are as
follows and are presented in figure 4.

Possible cruize flight levels : FL310, FL.350 and FL.390
Aircraft weight at start of cruise : 250 tons

Before introduction of the time constraint, at a
distance of 6000 nmi, the step points were determined

on the ground for no wind conditions and a Cost Index
of 50

h Tc
FL390 |' """"""" j :
FL350 b - = — e - — - - - - - !

| 1
FL31Ofape — - o e o o o~ 4 X

1000 3600 6000 nmi

Figure 4 : Case study description

Step point location

On figure 5, cruise distance is represented along the
horizontal axis while the possible values of the time
constraint are given along the vertical axis. The curves
represent, for the different values of the time constraint,
the location of the step points generated by the FAP and
SDP solutions.

Time (min)
890 +

870 1
310

850 +
oty
810 T
790 T

770 T

750

+ ¢ ¢ ¢ * X (nmi)
~1000 2000 3000 4000 5000 6000

730

Figure 5 : Step point locations for different time
constraints

For the classical FAP algorithm, the step points are
frozen and correspond to the initial assumptions of no
wind flight conditions and a Cost Index value of 50. The
step point locations are represented on figure 5 by two
vertical bold lines. The achievable time constraints are
determined by using the range of possible Cost Index
values {-100,999] which determines minimum and
maximum speed schedules. With the FAP approach,
time constraints between 747 min and 817 min can be
satisfied. This time window is defined by two horizontal
dashed lines on figure 5.

The location of the step points generated by the SDP
solution are also represented for all achievable time
constraints. In the time window [757min 800min], both
solutions define comparable step points. Qutside this
time window, the step points are located differently. For
a time constraint of 747 min, representing the lower
range of the FAP approach, the SDP solution defines a
first step point that is located about 1500 nmi further. It
also appears that the additional degrees of freedom of
the SDP approach provide a much larger achievable
time window as can be seen on figure 5.

Fuel burn

Figure 6 illustrates the cruise fuel bum
corresponding to the solutions for the different
achievable time constraints. In figure 6, time constraints
are represented on the horizontal axis and cruise fuel
consumption on the vertical axis.

Fuel (kg)
960007 «

940001

9200043 FAE ime
9000 ‘s window

88000} J\1800 ke

8600 §\ —
8400 2 .

8200 . =

80000730 750 770 790 810 830 850 870 890 910

SDP time
window

TC (I‘nin)

Figure 6 : Cruise fuel burn for the classical and SDP
solutions

In the time frame [757min,800min], where both
solutions define the same step points, the fuel burn is
similar. However, outside this time window, fuel
consumption performance can be very different : For a

‘time constraint of 747 min for example, the fuel saving

associated with the shift of the step point locations is
approximately 1800 kg which represents a total cruise
fuel saving of 2%.
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4D  Cruise Optimization With Multiple Time
Constraints

Computer simulations have demonstrated the
feasibility of the SPD approach in dealing with 4D
cruise optimization problems with multiple time
constraints. The SDP approach is able to deal efficiently
with several time constraints of different types as long as
they are compatible, i.e. achievable within the flight
envelope of the aircraft.

The previous cruise flight is considered but two time
constraints (Tc) at 3000 nmi and Tcy at 6000 nmi) are

now introduced :
Tc1 : ATORBEFORE 395 min: (- 395 min)

Tcy : AT 770 min: (= 770 min)
Figures 7 shows the Mach profile generated by the
existing FAP solution. Since the existing approach can
only deal with one constraint at a time (and only AT-
type time constraints), the solution is generated by

applying the FAP method twice in succession.

0,84

0,82

08

078 \[\L /35 min/ 355 min

0,76

0,74

0,72

0,7

o 1000 2000 d.ista:gg(zmni) 4000 5000 6000
Figure 7 : FAP solution for multiple time constraint
problems

Figure 8 shows the Mach profile generated by the
SDP approach.

MACH profile
________________________________________________________ .
0.84 ;
:
0,82 383 min /-395 min !
os |
0,78 :
1
0,76 ;
i
0,74 i
0,72
077 M 1
0 1000 2000 3000 4000 5000 6000
distance (nmi)

Figure 8 : SDP solution for multiple time constraint
problems
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The time constraints are such that the aititude profile
is unchanged for both solutions, and therefore remains
as presented on figure 4. However, the SDP approach
takes full advantage of the characteristics of the first
time constraint (AT OR BEFORE) and the predicted
passing time at Tc) is 12 min earlier than with the FAP
solution.

The resulting fuel burn in both cases is:

FAP solution : 85 645 kg
SDP solution : 82 169 kg

The fuel saving of the global SDP approach, over the
classical FAP solution used twice in succession, is
approximately 3.5 tons. This is considerable and could
Jjustify the implementation of the more complex SDP
solution in future Flight Management Systems as such
time constraints become more widely used by Air Traffic
Control.

6. Conclusions

In this study, the on-line cruise optimization problem
is solved using a dynamic programming based approach.
The dynamic programming formulation significantly
improves the optimum trajectory generation capabilities
of existing Flight Management Systems. It has been
shown that relevant fuel savings can be obtained, over
optimization functions implemented on existing FMS's,
for 4D optimization problems with a unique hard time
constraint. Furthermore, this new approach provides
extended capabilities for 4D-trajectory generation : It
performs 4D cruise optimization for multiple time
constraint problems with the possibility of including
"window type" constraints.

Although dynamic programming is usually
considered as a time-consuming technique, here
processing times have been cut down to acceptable
levels by the use of operational limitations and expert
knowledge to reduce the size of the search space and the
mumber of state transitions. Furthermore, neural
networks have been introduced for fuel burn calculations
at each decision step which divides computation time by
about 8.5 over current fuel burn evaluations. Increased
processing power in next generation Flight Management
Computers should further divide computation times by
approximately 5. The SDP approach therefore seems to
provide a solution for on-line 4D-trajectory optimization
in next generation Flight Management Systems.
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