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Abstract

Fatigue crack closure behaviour of a center-cracked
panel under cyclic biaxial loading conditions was
investigated using finite element methods. Under the
biaxial loading the calculated crack opening and
closure stresses are found to correlate closely with the
results reported in the literature. To account for the
influence of biaxial loading, the Brown&Miller’s
model is modified to estimate the plastic zone size
and the crack-tip opening displacement. Comparison
with finite element results demonstrates that the
modified model offers a considerable improvement
over the original.

Introduction

Many structures in airframes and engines in service
experience biaxial/multiaxial loading conditions
(proportional or nonproportional). Experimental
results have shown that fatigue crack growth rate is
strongly influenced by the biaxial loading
conditions!"?. To predict the fatigue crack growth
rate under the biaxial loading based on the
experimental results generated under uniaxial loading
condition, it is important to understand and quantify
the influences of biaxial stresses on fatigue crack
closure behaviour.

In recent years, there has been increasing interest in
finite element simulation of fatigue crack propagation
considering plasticity-induced crack closure effect,
mainly under the uniaxial loading condition®""*!. The
findings are fundamental to the development of the
third generation of fatigue crack growth models that
are increasingly being used as engineering tools for
fatigue life prediction. One difficuit aspect of the
finite element simulation is the appropriate crack
advance/closure scheme. In this regard, a number of
techniques have been proposed, such as spring
element approach, truss element approach, boundary
change technique and contact surface approach.
Furthermore, the definitions of crack opening and
closure stresses associated with elastic-plastic finite
element analysis under the uniaxial cyclic loading
have also received a considerable amount of attention
to obtain more accurate values.

Copyright © 1998 by ICAS and AIAA. All rights reserved

The main purpose of this study is to investigate
fatigue crack closure behaviour of a center-cracked
panel under cyclic biaxial loading conditions using
finite element methods. The fatigue crack opening
and closure stresses were obtained using a spring
element release method for elastic-perfect plastic
material behaviour. Two typical biaxial stress states
have been considered, equibiaxial and shear. The
calculated crack opening and closure stresses are
compared with those reported in the literature.
Especially, based on a strip yielding model, an
improved Brown&Miller’s theoretical model is
developed. The results show a good agreement with
the finite element prediction. The study has concluded
that biaxial loadings have a significant influence on
fatigue crack closure behaviour at low stress ratio
with higher maximum applied stress levels. However,
the biaxial loading effect at high stress ratio may be
negligible. It should be noted that the results
presented here all are applied to plane stress
condition.

Finite element simulation of fatigue crack growth

After Elber' discovered the plasticity-induced crack
closure during fatigue crack growth, scientists!”/®!
started to employ finite element to calculate the crack
opening and closure stresses at the crack tip under
either constant or variable amplitude uniaxial cyclic
loading so that crack growth data can then be
correlated properly with the effective stress intensity
factor range. The effective stress intensity factor
range is the difference between the maximum stress
intensity factor and the minimum stress intensity
factor at which the crack is just fully open during
loading. ’

To simulate fatigue crack propagation using finite
element (FE) methods, a spring element approach was
first proposed by Newman'”), and then extensively
followed up because of its simplicity. Similarly, the
method used in this study involves introducing a
series of spring elements along the crack plane. There
are a pair of spring elements, one tension-only and
one compression-only spring element, for each
element node. The tension-only spring elements are
used to restrain crack tip during loading, while the
compression-only spring elements are used to prevent
the crack surfaces penetration during unloading.
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Crack growth is simulated by releasing one tension-
only spring element per cycle at maximum load.

The material of the center-cracked panel was Ti8-1-1
which is commonly used in the compressor
components of aircraft engines. Its Young’s modulus,
E, is 117.4 GPa and Poisson’s ratio, v, is 0.33. The
initial yield stress, o;, is 782.0 MPa. The initial crack
length, a;, was 5.0 mm. The half panel width, w, was
101.6 mm.

The panel was meshed with 1754 plane stress four-
node quadrilateral elements. To obtain reliable crack
opening and closure stresses the element length along
the crack advance line should be less than 10 percent
plastic zone size for this particular element!*).

To validate the FE model, the crack opening and
closure stresses under uniaxial loading conditions
were first calculated. The maximum gross applied
stress was 0.4 g;. The element length along the crack
line was 0.04 mm which was about 3 percent of the
plastic zone size. Figure 1 shows the stablized crack-
opening and closure stresses normalized to the
maximum applied stress as a function of stress ratio
R. The stability of the crack growth was normally
established after 10 cycles so that crack opening
stress levels do not change with further crack
advance, and the results used in Figure 1 were
obtained at cycle 15. The symbol o, denotes the
crack opening stress and o, for closure stress.

Under uniaxial loading, based on numerical
calculation, Newman!'”! developed two equations (1)-
(2) which are able to predict crack opening stresses of
a center crack tension specimen under both smalil
scale yielding and large scale yielding conditions.

(o3
P = Ay + AR+ A R* + 43R? )
max
forR>0and
(e}
%= 4o+ AR @)
max

for -1 <R <0. The coefficients A, to A; are given by
A,=(0.825-0.340+0.050%)[cOS(T Orman/205)]
A =(0.415-0.0710) Ginax/Co
Ar=1-Ag-A -As

A3=2A0+A I 1

where o, is the cohesive stress which normally taken
to be the average of the yield stress and the ultimate
tensile strength of the material under uniaxial loading
condition. The coefficient o is the constraint factor,
o=1 for plane stress and o=3 for plane strain. In
practice, o is in between 1 and 3 standing for finite
thickness plate.

As can be seen from the Figure 1, the opening stresses
from the FE model correlate well with Newman’s
prediction for —1<R<0. For R=0, the FE opening and
closure stresses are closer to Budiansky-Hutchinson’s
theoretical solutions!"). The difference between the
FE prediction and the Budiansky-Hutchinson’s
theoretical solution is 4.8% for the opening stress, and
13.0% for the closure stress. For R>0, the calculated
opening stresses are slightly higher than Newman’s
prediction.
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Figure 1 Crack opening and closure stresses vs R

Plastic zone and CTOD under biaxial loading
conditions

To predict plastic zone size and crack-tip opening
displacement (CTOD), under biaxial loading
conditions as shown in Figure 2, Brown&Miller'”
proposed a modification to the original strip yield
model by Dugdale”). The parameter A is the ratio of
stress parallel to the crack plane to stress
perpendicular to the crack plane, for short, the
biaxiality ratio. Obviously, the biaxiality ratio A=0
stands for uniaxial loading, A=1 for equibiaxial and
A=-1 for shear loading.

In the Brown&Miller’s model, by introducing the T-
stress, T = (A-1)o, and assuming there is no effect of
the T-stress on the crack tip singularity, the cohesive
stress g, for plane stress can then be expressed by the
following using the von Mises yield criterion.
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o= 5 (T 402 -3T%) ©)

Substituting T and o, in Eq.(3) into the Dugdale
model, therefore, the plastic zone size is

r, = a[sec( i )-1]
’ (A=D+ 4o, /o) -3(A-1)?
4
and the CTOD is
5= % [(x-l)c+J4a§ -3(A-1D*c” ]
T
In[sec(
(A-D+44(0, /0)* ~3(A~1)?
S))

where E’ = E for plane stress and E’ = E/(1-v?) for
plane strain. From Egs. (4) and (5), under biaxial
loading conditions, the plastic zone size and the
CTOD are functions of biaxiality ratio and maximum
applied load.
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Figure 2 Cracked panel under biaxial loading

The Brown and Miller’s model in Egs. (4)-(5) has
some deficiencies. First, the model fails to recover the
Dugdale model under uniaxial loading condition.
Secondly, the maximum applied stress Gy, is limited
less than L o, for A=-1. In other words, the
J7

solution would diverge as the maximum applied stress

1
Omax approaches — o, for A=-1.

7

As shown in Figure 3, the Brown&Miller’s model
predicts that the plastic zone size is very sensitive to
the biaxiality ratios even at the low ratio of opa/ay.
However, the FE results show that the plastic zone
size is not so sensitive to the biaxiality ratios when the
ratio Omay/ 0y is less than 0.4. When the ratio of g,y to
oy is increased up to 0.5, the FE resuits did show a
strong influence of the biaxiality ratios. The strong
influence of the biaxiality ratio at the high ratio of
Omax/ 0y (about 0.50) is consistent with the prediction
presented in McClung’s work!'", which was
confirmed by experimental crack growth data.

2

=4

=l

<

2 10f .

g F

g

s

=

®

o 1F s L A
= s B kTP ”

-1 0 1
Biaxial stress ratio A

Figure 3 Plastic zone size vs A
(Dotted lines for B&M model/Line+Symbols for FE)

Crack tip

Figure 4 Plastic zones under biaxial loading

In the FE study, it has been found that the plastic zone
size and its contour shapes are strongly influenced by
the biaxial loading conditions. Figure 4 shows the
plastic zone shapes at maximum load for the
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biaxiality ratios A=—1, 0 and 1. Plastic zone sizes for
A=0 and A=1 are equal along the crack line, but
different along the 45° direction from the crack tip.
The plastic zone for A=—1 is the largest along the 45°
direction, but is smaller than those for A=0 and A=1
along the crack line. Because the plastic zone shape
are very different for three different biaxiality ratios,
the plastic zone size, r, is herein defined as the
maximum radius of the plastic zone contour
originating from the crack tip.

Similar to the above discussion on plastic zone size,
the CTOD calculated by FE model is also not very
much dependent on the biaxiality ratio until the ratio
of Omax 10 oy is reaching to 0.5. The value of the
CTOD is determined at the intersection of the crack
front profile with a 45° line emanating from the crack
tip. This operational definition of the CTOD was
suggested by Tracey!™. Figure 5 shows a large
degree difference between the Brown&Miller’s model
and the FE prediction.
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Figure 5 CTOD vs A
(Dotted lines for B&M model/Line+Symbols for FE)

Improved Brown&Miller’s Model

From above results, it is clear that the
Brown&Miller’s model overestimates the biaxial
loading effect. Hence, there is a need to develop an
improved model to give better prediction. Based on
the Dugdale model, the plastic zone and COD, for the

case in Figure 1, can be obtained by superposition of -

two elastic problems as shown in Figure 6. If applying
the von Mises yield criterion for plane-stress
condition along the crack plane in Figure 6(b), we
have

1 2 2
6= (ot 4o} -3(0)*) (©)

On substituting o, in Eq.(6) into the Dugdale model,
the improved model for the plastic zone size is

V4
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and for the CTOD is

5= 29 o+ 402 -32%¢? |
k'

T
tnlsec( /1+‘/4(0'y /o‘)2 -342 ) ®
°1
) 2¢C |
c Ao 23 Ao
G
l

)

Figure 6 Elastic cracks under biaxial loading

It is evident that the improved model is first able to
recover the original Dugdale model under uniaxial
loading condition. Secondly, the model is able to
calculate the plastic zone size and the CTOD for the

maximum applied stress g Up to —j? oy for A=-1.

Figures 7 and 8 shows the combined effect of the
maximum applied load and the biaxiality ratio on the
plastic zone size and the CTOD indicating a good
agreement with finite element results. The present
results reveal that only at the high ratio of owa/oy
(about 0.40 and 0.50) do the biaxiality have a
significant influence, which is consistent with the
McClung’s earlier results!'?,
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Figure 7 Plastic zone size vs A by improved model
(Dotted lines for B&M model/Line+Symbols for FE)
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Figure 8 CTOD vs A by improved model
(Dotted lines for B&M model/Line+Symbols for FE)

Crack closure behaviour under biaxial loading
conditions

The combined influence of the biaxiality ratios and
the maximum applied stress on fatigue crack closure
behaviour at various R-ratios in the ranges of -
1.0<R<0.5 are presented in this section. Generally
speaking, there is no definite dependencies of the
crack closure on the biaxial stress ratio, A. It is a
combined effect of the biaxiality ratio, the stress ratio
and the maximum applied stress level.

Figure 9 presents the crack closure behaviour for R =
—1 at the biaxiality ratio L =—1, 0 and 1. Similar to the
McClung’s FE results, the ogy/0omax are high for
equibiaxial loading and low for shear loading, with an
intermediate value for uniaxial loading.

From the Figures 10-12, the effect of biaxiality ratio
on the crack closure seems decrease with the increase
~ of the stress ratio R. In extreme case of R=0.5, the

biaxial loading effect is diminishingly small and
hence may be negligible.
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Figure 9 Maximum stress and biaxial loading effect
on crack opening stresses for R=-1
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Figure 10 Maximum stress and biaxial loading effect
on crack opening stresses for R=—0.3
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Figure 11 Maximum stress and biaxial loading effect
on crack opening stresses for R=0
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Figure 12 Maximum stress and biaxial loading effect
on crack opening stresses for R=0.5

Conclusions

Fatigue crack closure behaviour of a center-cracked
panel under cyclic biaxial loading conditions are
investigated using finite element methods. An
improved Brown&Miller’s model is developed for the
estimation of the plastic zone size and the crack-tip
opening displacement under the biaxial loading
conditions. The following conclusions may be drawn
from the study.

(1). Biaxial loading may have significant influence on
crack closure behaviour at low stress ratio with high
maximum applied stress level. But, the biaxial
loading effect at high stress ratio may be negligible.

(2). An improved Brown&Miller’s theoretical model
for the calculation of plastic zone size and the CTOD
under biaxial loading conditions has been presented.
The improved model is able to recover the Dugdale
model under the uniaxial loading condition.
Furthermore, under the biaxial loading conditions, the
improved model can give better estimation of the
plastic zone size and the CTOD assessed with the FE
prediction results.
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