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Abstract

This paper presents a design optimization
method that couples a Navier-Stokes flow solver
and numerical optimization algorithm. The design
method improves the performance of a transonic
turbine blade subject to specified design objective
and constraints. The flow field prediction is based
on the Navier-Stokes equations in order to
represent the nonlinear, rotational and viscous
physics of transonic flows. - Sensitivity derivatives
are obtained using finite differencing. Effects of
different design variables on the performance of
design optimization are evaluated. The method is
demonstrated with several examples at transonic
flow conditions.

Introduction

Computational fluid dynamics (CFD) has
changed the aerodynamic design process. CFD was
first employed in design in a cut-and-try manner by
utilizing its flow analysis capability. That is, a
specified configuration is first evaluated to get its
aerodynamic performance characteristics, and then
the geometry is modified to produce an improved
performance. While this methodology may be
effective if the designs fall within a known
experimental database, it becomes cumbersome and
difficult when the design progresses outside the
“domain of the known database. This type of design
methods for turbomachinery system was discussed
in Reference 1. Clearly, more automated design
optimization technologies are desirable for the
development of new turbomachinery components.
As computational methods have advanced, CFD-
based numerical optimization became a more viable
design tool for advanced turbomachinery
components.

A unique advantage of CFD is the capability of
inverse design. Inverse design finds the blade
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geometry that produces the pressure or velocity
distributions specified by a designer.  Earlier
inverse design methods were based on the potential
equation due to its simplicity.>® However, high-
level physics has inherent difficulties in inverse
formulation due to its multi-variable, multi-equation
feature. Also, it is not easy to define the target
pressure  distributions that produce desired
aerodynamic performance, and there is no
guarantee that such geometry exists that produces
the target pressures. Furthermore, turbomachinery
blade performance is often judged by parameters
such as kinetic energy and total pressure loss
coefficients, instead of local blade-surface velocity
or pressure distributions.

The use of numerical optimization eliminates
some of the difficulties associated with inverse
design. Numerical optimization provides a rational
and directed search through the design space.
CFD-based optimization is capable of modifying a
geometry to improve a design while satisfying
specified design constraints.*> In this approach, a
specified design parameter can be improved
without degrading other aspects of the design.
Unfortunately, numerical optimization requires
intensive computations, particularly when the
design involves nonlinear problems with many
design variables and constraints. However, the
efficiency of modern flow solvers, as well as the
computational power available today, can alleviate
this drawback.

The reliability of design results depends on
the ability to accurately simulate the flow field.
Hence the flow model used in a design process
should be able to represent all the significant flow
physics involved. Transonic turbomachinery flows
contain a variety of complicated flow phenomena
such as shock waves, shock-boundary-layer
interactions, turbulent boundary layers and wakes.
Several attempts have been made to utilize Euler or
Navier-Stokes physics for turbomachinery design.
References 6 and 7 used the Euler-equations in their
design methods. A recent study® demonstrated that
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Navier-Stokes  designs  are  feasible  for
turbomachinery design. The objective of this study
is to build a Navier-Stokes-based turbomachinery
design tool using a constrained optimization and to
evaluate its ability and efficiency in finding
improved designs. The design goal is to decrease
the loss coefficient without decreasing the mass
flow rate, the blade loading, and the blade cross-
sectional area.

Flow Analysis

The two-dimensional, unsteady, compressible
Navier-Stokes equations are solved using a body-
fitted, curvilinear coordinate system. The Baldwin-
Lomax eddy viscosity model® is used for turbulence
closure, and the transition point is fixed at fourteen
percent of the chord. A finite volume method is
employed for the spatial discretization. The flow
variables are defined at cell centers, and centered
differencing is used for the spatial derivatives.
Second- and fourth-order artificial viscosities are
added to enforce numerical stability.!®'! The time
integration is performed using an explicit, four-
stage Runge-Kutta scheme. Local time stepping,
variable-coefficient implicit residual smoothing,
and a multigrid method are implemented to
accelerate the convergence. Characteristic
boundary conditions are imposed at the far-field
boundary based on a one-dimensional eigenvalue
analysis, and a no-slip, adiabatic-wall conditions
are used on the blade surface.

The reliability of the Navier-Stokes code is
first evaluated by comparing its analysis results
with experimental data. All the analysis and design
practices are performed using C-type grids with size
of 257x33. The grid spacing adjacent to the blade
surface is set to 0.01 percent of the chord length.
Figure 1 shows the grid and the isentropic Mach
number distributions for the VKI-LS82 turbine
blade.”” The computed isentropic Mach numbers
are in good agreement with the experimental data.

Numerical Optimization

The optimization method employed in the
present design study is based on a conjugate
gradient algorithm.”” The method searches for the
optimum values of the design variables that
minimize a specified objective function under a set
of constraints. The general optimization problem
can be written mathematically as follows:

minimize F(X) 1t

subject to gj(f() <0 j=1toJ

Xy <X, <XY k=1w0K
where F is the objective function, and g’s are the
constraints. J is the total number of constraints.

The vector X represents design variables X, with
length K. The constraints imposed on design
variables are called side constraints.

The optimization process starts with an initial
guess of the design variables. The design is then
updated using an iterative procedure given by

j‘(n+] =5'(11+Bn§n (2)

where the superscript n is the iteration number, the
vector S is the search direction, and the scalar B

is the step size to move into the search direction.
The optimum step size is found using a one-
dimensional search and interpolation. The process
is iterated until it converges. The search direction
must be both usable and feasible. A usable
direction is the direction that reduces the objective
function,

VF()“()-é <0, (3)

and a feasible direction is the direction that satisfies
the jth-constraint,

Vg;(XjeS<0. )

When no constraints are active, the search
direction is obtained using the Fletcher-Reeves
conjugate direction method by 1imposing the
orthogonality condition between search directions.
A constraint becomes active when its value
becomes zero within some numerical tolerance.
When some constraints are active or violated, a
sub-optimization process is used to find the search
direction.  The left-hand side of Eq. (3) is
minimized subject to the active constraints given by
Eq. (4). The gradient operator V is the sensitivity
of a function with respect to the design variables
and is calculated using finite differencing.

Design Variables

In general, turbomachinery blade design
involves different disciplines such as fluid
mechanics, heat transfer, materials, acoustics, etc.
For example, heat transfer is an important factor
that determines the leading- and trailing-edge
thicknesses of a turbine blade because turbines are
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operated at high temperature. Therefore, all
significant physics should be considered in
selecting design variables and constraints.
However, increasing the number of design
constraints and/or variables will increase the design
cost. An appropriate choice of design variables
may reduce the number of design constraints
required while increasing design performance.

The blade geometry is modified by adding a
smooth perturbation An to the initial geometry.
The geometry perturbation normal to camber-line is
defined as a linear combination of shape functions
fi:

K
An=Y X, f(x) o)

where x is the normalized position of the camber-
line, and K stands for the number of shape
functions to be used. The weighting coefficients,
Xy in the equation are the values of the design
variables that are determined through the
optimization process. The shape functions modify
both upper and lower surfaces of the blade.

The performance of a design process is
strongly influenced by the choice of shape functions
because shape functions influence the convergence
rate of the optimization process as well as the
quality of design results. The present study
examines the following four different shape
functions shown in Figure 2.

Hicks-Henne Functions:

The sinusoidal shape functions are frequently
used in airfoil optimization.

£,(x) = x*% (1 - x)exp(—20x) {6)
fk(x)zsin3(nxe(k)) for k>1
‘where
()= log(0.5)
log(x, )

x, = 0.25, 0.5, 0.75, 0.85

Here x,’s are the locations of maximum height of
corresponding shape functions.

Wagner Functions:

The Wagner functions provide large variations
with high harmonics and may cause waviness in
resulting designs.

fl(x)=w)—]——sin2(gj )

sin(k6) sin|(k —1)6]
kr T

fi(x)= + fork>1

where

e=2sin-’(&)

Legendre Polynomials;

The Legendre polynomials are orthogonal
functions that may be advantageous as shape
functions.
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Patched Polynomials:
A cubic on one side of x,is patched with

another cubic on the other side to produce a smooth
curve of second-order continuity. X, is the location

of maximum perturbation.

st

for 0<x<x, )
X=Xy 2 B 1-x
fk(x)=1—[1 j 1+ 2'..——
"Xk (Xk) I—Xk

for x, <x<1

where
A = max(0,1-2x, )

B = max(0,2x, —1)
xy = 0.15, 0.25, 0.5, 0.75, 0.85

Results

The goal of the present design study is to
generate a turbine blade geometry that produces the
minimum loss coefficient at a given operating
condition, while maintaining the blade loading, the
mass flux rate, and the cross sectional area. The
particular form of the current optimization problem
can be stated as:
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minimize Cioes =1 sz
Vais
. L
subjectto  1-—<0 (10)
Lo
-2 <o
M,
-2 <o
Ay

where C, L, M, and A are the loss coefficient,

the blade loading, the mass flux rate, and the cross
sectional area, respectively. The subscript O stands
for the initial values. v, and vy; are the exit velocity
and the isentropic exit velocity, respectively.

All design practices are conducted with the
VKI-LS82 turbine blade as the initial geometry at
the exit Mach number 1.43 and Reynolds number
one million. Results are given in Tables 1 to 4 and
Figures 3 to 6 for shape functions of Hick-Henne
functions, Wagner functions, Legendre
polynomials, and patched polynomials,
respectively. Figure 7 compares pressure contours
between original and designed blades.  Also
compared are streamlines near the trailing-edge.
All computations are conducted on an SGI Indigo
workstation. In most cases, the design cycle is
terminated after the first geometry update,
indicating that the design process reaches a local
minimum and cannot escape it. A more gain in the
objective function is obtained with Wagner
functions and patched polynomials. A caution
should be taken in locating the maximum height of
a shape function such that it will not significantly
alter the leading- and trailing-edge radii. The
tolerance level of side constraints should also be
chosen not to allow a large change in leading- and
trailing-edge shapes.

Concluding Remarks

The present paper demonstrates a design
optimization method based on the Navier-Stokes
equations for turbomachinery design. Preliminary
results indicate that a considerable gain can be
obtained in design objective while satisfying design
constraints. ~ However, the design process is
hampered due to the local minimum issue
associated with nonlinear design spaces. The
present study shows that the efficiency of the design
process is significantly affected by the choice of
shape functions.
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Table 1. Design optimization of the VKI-L.S82 turbine blade with Hicks-Henne functions.

Initial Design Change (%)
Closs 0.80340E-01 0.78629E-01 -2.130
Area 0.56510E+00 0.56983E+00 0.837
Mass Flow 0.16114E+00 0.16189E+00 0.465
Blade loading 0.21993E+00 0.22100E+00 0.487

Number of function calls = 37, CPU = 5 hours 40 minutes
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Figure 3. Design optimization of the VKI-LS82 turbine blade with Hicks-Henne functions.
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Table 2. Design optimization of the VKI-LS82 turbine blade with Wagner functions.

Initial Design Change (%)
Cioss 0.80340E-01 0.73486E-01 -8.531
Area 0.56510E+00 0.59881E+00 5.965 )
Mass Flow 0.16114E+00 0.16050E+00 -0.397
Blade loading 0.21993E+00 0.22021E+00 0.127

Number of function calls = 39, CPU = 11 hours 45 minutes
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Figure 4. Design optimization of the VKI-LS82 turbine blade with Wagner functions.




Objective

" 0900
0

Isentrepic Mach number

Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

1.000

q
0.980 :
0.980 :—
0.940 :—

0.920 +

Table 3. Design optimization of the VKI-L.S82 turbine blade with Legendre polynomiais.

Initial Design Change (%)
Cioss 0.80340E-01 0.78565E-01 -2.209
« Area 0.56510E+00 0.57438E+00 1.642 ’
Mass Flow 0.16114E+00 0.16299E+00 1.148
Blade loading 0.21993E+00 0.22280E+00 1.305

Number of function calls = 108, CPU = 13 hours 3 minutes
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Figure 5. Design optimization of the VKI-LS82 turbine blade with Legendre polynomials.
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Table 4. Design optimization of the VKI-LS82 turbine blade with Patched polynomials.

Initial Design Change (%)
Closs 0.80340E-01 0.74685E-01 -7.039 )
Area 0.56510E+00 0.58964E+00 4.343
Mass Flow 0.16114E+00 0.16258E+00 0.894
Blade loading 0.21993E+00 0.22237E+00 1.109

Number of function calls = 31, CPU = 6 hours 25 minutes
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Figure 6. Design optimization of the VKI-LS82 turbine blade with Patched polynomials.
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b) Pressure contours of designed blade

kc) Particle traces of VKI-LSSZ turbine blade

d) Particle traces of designed blade

Figure 7. Design optimization of VKI-LS82 turbine blade with Patched polynomials.
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