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Abstract

This paper is concerned with an adaptive time-
stepping algorithm to solve the equations of motion
of nonlinear constrained multibody systems discretized
using the finite element method. A time-discontinuous
Galerkin schermne is used as the basis for the formu-
lation. The resulting scheme presents unconditional
stability, third order accuracy and high frequency nu-
merical damping. The Lagrange multiplier technique
1s used to enforce the kinematic constraints among the
bodies. The formulation uses Cartesian coordinates
to represent the position of each body with respect to
an inertial system. The adaptive time-stepping algo-
rithm selects time step sizes that reduce computational
cost and maintain the accuracy of the solution. The
results presented confirm the high order accuracy of
the scheme and the significant reduction in computa-
tional cost of the solutions. Two examples are suc-
cessfully analyzed with the algorithm: a nonlinear os-
cillator and a simple nonlinear constrained multibody
systern. In light of the results the algorithm seems to
be very promising to treat complex nonlinear elastic
multibody systems.

Introduction

Multibody systems usually present general and com-
plex topologies whose accurate modeling implies on
carefully addressing factors such as the coordinate
systems to be used, the formulation of elastic mem-
bers, the enforcement of kinematic constraints and the
parametrization of finite rotatians. Different method-
ologies of analysis result from the way such factors are
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addressed and the best methodology to analyze a cer-
tain type of multibody system may vary widely.

This work concerns the analysis of nonlinear con-
strained multibody systems discretized using the finite
element method.The formulation uses Cartesian coor-
dinates to represent the position of each body with
respect to an inertial frame. The Lagrange multiplier
technique is used to enforce the kinematic constraints
among the various bodies. Although this approach
does not involve the minimum set of coordinates(!},
it allows a modular development of finite elements
to represent a varlety of kinematic constraints, so
that general multibody configurations can effectively
be modeled. The resulting systems of equations are
differential-algebraic in nature. Such systems are stiff
due to the presence of high frequencies in the elastic
members, and also the infinite frequencies associated
with the kinematic constraints. In reality, no mass
1s associated with the Lagrange multipliers degrees of
freedom resulting algebraic equations coupled to the
differential equations of the systern. This study ap-
plies an adaptive time-stepping algorithmn to solve the
equations of motion of nonlinear constrained multi-
body systems.

Using the natural framework of the second-order hy- -
perbolic equations, instead of relying on converting the
equations to a first-order symmetric hyperbolic form,
Hulbert?] developed time and space-time discontinu-
ous Galerkin finite element methods to solve structural
dynamics and elastodynamics problems. The result-
ing systems of equations are larger than the original
ones, and fully coupled, which increases the computa-
tional cost of the solution. However, the scheme may
be solved in a predictor-multicorrector form, which al-
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leviates the high computational cost of the fully cou-
pled system, maintains the high order of accuracy and
unconditional stability of the original scheme, and im-
proves its characteristics of high frequency numerical
damping.

An adaptive time-stepping procedure, based on a
time-discontinuous Galerkin scheme, for selecting the
proper time step size is presented by Li and Wibergl®l,
They use a two-field formulation, namely the P1-P1
formulationld, which interpolates displacements and
velocities as piecewise linear funtions. In the study
herein developed a single-field formulation is used with
displacemnents approximated as a quadratic function.
The resulting system of equations is smaller than the
one resulting from a two-field formulation with the ad-
vantage of improved accuracy characteristicsl?l. A sin-
gle degree of freedom nonlinear undamped oscillator is
used to assess the applicability of the time adaptive al-
gorithm to nonlinear problems. Then, a nonlinear sim-
ple pendulum is analyzed as a two degree of freedom
problem and to enforce its length to remain constant a
constraint equation is added to the Lagrangian of the
system. Due to its inherent high frequency numeri-
cal dissipation the time-discontinuous Galerkin scheme
does not present the weak instability observed in the
Newmark schemel® and the high frequency numerical
oscillations of the solution are completely damped out
at the first time step of the analysis.

A Time-Discontinuous Galerkin
Finite Element Method

Consider!? a partition of the time domain ] = 0,7)
in the form 0 = ¢y < ¢; < -+ < ty = T with corre-
sponding time steps At, = {, — t,—1 and intervals
I, = (tn—1,tn). The finite element interpolation func-
tions for the trial displacements are

N
S* = {u" € {J(P*(In)) =} (1)
n=1

where P? stands for second-order polynomial and each
member of S" is a vector consisting of Neg quadratic
functions on each time interval I,,. By construction,
the interpolation functions are continuous within each
time interval and may be discontinuous across time
slabs. To enforce the continuity across time intervals
a temporal jump operator

[w(ta)] = w(t]) — w(ty) (2)

where
w(ty) = lim, w(ty +¢)

(3)

is used. The displacement weighting function space is
identical to the trial displacement’s.

The statement!*] of the time-discontinuous Galerkin
finite element method for the single-field formulation,
applied to the ordinary differential equations associ-
ated with the semidiscrete form of linear elastodynam-
ics is: .

Find u* € S* such that for all w" € S*

.
[@" - (Mi* + Cit + Ku — F)dt +

i
Qh(t:—ﬂ M i‘h(t:—l) __i‘h(tr:—l)] + 4
ﬂh(t:q) : K[ﬁh(t:—l) - Eh(t;—l)] = 0
In equation (4) n = 1,2,---, N, where N is the num-

ber of time intervals. Variables u* and w” are, respec-
tively, displacements and weighting functions; %" and
4" are, respectively, velocities and accelerations. The
last two terms on the left-hand side weakly enforce the
initicial conditions for each time interval. These jump
terms are stabilizing operators that have the effect of
“upwinding” information with respect to timeld. Also,
M, C and K are the mass, damping and stiffness ma-
trices, respectively, and F is the force vector. Since the
displacements are interpolated as quadratic functions,
the resulting system of equations is 3 times larger than
the ones solved by commonly used semidiscrete meth-
ods. To circumvent the high computational cost of
solving the fully coupled equations, the system is cast
in a predictor-multicorrector form, which maintains
the characteristics of high order accuracy and uncon-
ditional stability of the scheme, besides improving its
high frequency numerical damping capability.

The Adaptive Time-Stepping
Procedure

In modern structural dynaric analysis it is con-
venient that an integration scheme allows automatic
time step size control. It will reduce computational
cost while a required accuracy in the solution is main-
tained. Based on a two-fleld formulation of the time-
discontinuous Galerkin method Li and Weibergl®! ap-
plied an adaptive time-stepping algorithm to solve lin-
ear structural dynamics problems. In their formula-
tion displacements and velocities are interpolated _as-
piecewise linear funtions, resulting in systems of equa-
tions 4 times larger than those emanating from com-
monly used semidiscrete methods.

The work described in this article is concerned with
the solution of nonlinear constrained structural dy-
namics problems. Hulbert/2] has shown the stability
and accuracy characteristics of the time-discontinuous
Galerkin scheme when applied to linear structural dy-
namics. However, there is no proof of stability when
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the method is used 1o solve nonlinear problems. A nat-
ural measure of stability for the differential equations
associated with the semidiscrete form of structural dy-
namics is the total energy of the system. Indeed, a
scheme that eliminates the energy associated with vi-
bratory motions at high frequencies, which are of a
purely numerical origin, implies the presence of nu-
merical dissipation and guarantees the stability of the
solution. Bauchaul has shown a shortcoming of using
a method whose stability has only been established for
linear systems: energy can be created in the numerical
solution process, when applied to a nonlinear system,
leading to potential instabilities. Due to the lack of
proof of stability for the time-discontinuous Galerkin
method when applied to nonlinear constrained sys-
terns, the total energy is used to monitor the sta-
bility characteristics of the scheme. Also, the use of
an enegy-like quantity as convergence criterion does
not necessarily imply true energy convergence when
dealing with complex constrained nonlinear structural
problems!¥. Hence, the total energy of the system
1s used to estimate an error to control the time step
size. The time adaptive algorithm presented by Li and
Weibergl®! is herein applied to the problems of non-
linear constrained structural dynamics. For the auto-
matic time step size control the relative error at a time
t, 1s defined as

E(ta) - EQ)
50 5)

where E' is the total energy, E(-) = K(-) + V(.), i.e,
the sum of kinetic and potential energies, and E() is
a reference energy of the system. It is expected that
the relative errors satisfy the condition

n =

€n S€tol , (6)

where €' is a specified error tolerance. If requirement

(6) is not satisfied, a time step refinement is performed:
the corresponding solution is rejected and, given that
the convergence rate for the algorithrn is O(At%), the
new time step size that will satisfy the error tolerance
criterion is calculated® 3 as

9 toly 1/3
At;oz = (‘L> Atn ) (7)

€n

where §; < 1.0 is a reducing factor used to avoid the
new predicted time step size being rejected. On the
contrary, if the calculated error is much smaller than
the tolerance, i.e.,

€n < ver! (8)

the solution is accepted but the time step size may be
increased according to equation (7) when the criterion
(8) is satisfied for a certain successive number of time

steps. In equation (8) % is a number much smaller
than 1.0. ;

Numerical Examples

In this section, two numerical examples are pre-
sented to assess the applicability of the fore mentioned
algorithm to nonlinear problems of structural dynam-
ics. The first example deals with a single degree of
freedom nonlinear undamped oscillator. The second
example envolves a kinematic constraint, which in-
creases the complexity of the problem.

Nonlinear Oscillator

A nonlinear undamped oscillator represented by
mit + ku® = 0 (9)

is studied. The system has mass m = 1.0kg and stiff-
ness k = 25.0N/m. Initial conditions are u(0) = 0.0
and u(0) = —1.5m/s. The solution is cornputed for
30 seconds with At = 1.0E-03, i.e., 30000 time steps,
without adaptivity. The total energy is £ = 1.125
and at the last time step it shows an inaccuracy of
the order of 1.0E-12. The total CPU time is 337 sec-
onds. The adaptive algorithm with §; = 1.0, v = 1.0
and €'°' = 1.0E-06 reduces the comnputation time to
20 seconds and 1234 time steps, i.e., less than 6% of
the CPU time needed for the solution without adap-
tivity. The total energy is preserved to the accuracy of
1.0E-07. Results for displacements, velocities and ac-
celerations are in excellent agreement with the exact
solutions. Figure (1) presents accelerations obtained
with the time-discontinuous Galerkin adaptive algo-
rithm (TDG) in perfect agreement with the exact so-
lution. Figure (2) shows the results for the time step
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Figure 1: Accelerations for the nonlinear oscillator.

sizes throughout the calculation period. As expected,
the algorithm increases, and reduces, the time step size
according to the calculated error at each time step.

It is important to remark that since this is a very
simple problem the trend observed in energy error for
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Figure 2: Time step size for the nonlinear oscillator.

this example will certainly not be the same in case of
complex nonlinear problems. The following example
will allow to outline some conclusions regarding such
a matter.

Simple Pendulum

Consider a simple pendulum problem modeled as a
point mass m and a massless rigid link of length I. Two
degrees of freedom u, and uy, respectively, vertical and
horizontal displacements, describe the position of the
mass m. Only gravity acts upon the systemn. Non-
linearity is due to the initial conditions. Through an
augmented Lagrange multiplier technique a constraint
equation that guarantees the constant length I of the
pendulum is added to the system. Such a constraint
introduces an infinite frequency into the system of
equations, which then becomes prone to numerical in-
stabilities and oscillations of a purely numerical origin.
Cardona and Geradin(® have shown the impossiblity
of solving this problem with the Newmark time inte-
gration scheme. Nevertheless, the time-discontinuous
Galerkin scheme efficiently solves this nonlinear con-
strained problem as shown by Damilanol?.

Despite the reduced number of degrees of freedom
and its rigid body nature, this problem is studied aim-
ing the possibility of applying the technique }1erein
described to more representative multibody systems,
e.g., problems with large number of degrees of free-
dom, several kinematic constraints and nonlinear elas-
tic members. For the present study m = 1.0kg,
[ = 05m, ¢ = 9.81m/s?, and the initial conditions
are uy = 0.5m, uy = 4, = 0.0, 4, = —1.695m/s.
The solution is calculated for 50 seconds and the nu-
merical results are in excellent agreement with their
analytical counterparts. The reduced loss in total en-
ergy observed in the first example is not prresent in
this case. Initially solved without adaptivity, i.e., with
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Figure 3: Relative energy error for the nolinear pen-
dulum with constant time step.

a constant Af, a large increase in relative energy error
is observed during the first 10 seconds of the solution,
as shown in Figure (3). In fact, it increases about
3 orders of magnitude. This error keeps increasing
during the computations of the solution, however, at
a low gradient in the instants that follow the initial
10 seconds. As previously pointed out, the presence
of a kinematic constraint makes this problem prone
to numerical instabilities and oscillations. Algorithms
that are unconditionally stable but present no numer-
1cal dissipation, such as the Newmark method, are
not able to solve this type of problem. The inher-
ent high frequency numerical dissipation of the tirme-
discontinuous Galerkin method completely eliminates
the undesired high frequency numerical oscillations.
This numerical dissipation guarantees the stability of
the scheme. However, it also implies the energy de-
caying results observed. A conventional analysis of
the scheme based on the characteristics of the amplifi-
cation matrix!®, for linear systems, results the period
elongation AT/T = w*At*/270 + O(w®At®), and the
algorithmic damping ¢ = w?At3/724+0(w®At®), where
w? = k/m. Thus the scheme is third-order accurate.
However, there is no guarantee the same accuracy will
be observed with nonlinear constrained systems. To
assess the order of accuracy of the scherne applied to
the nonlinear pendulurn, the results at time t = 10 sec-
onds were used to calculate the errors of the solution
as functions of the time step size. The results are pre- .
sented in Figure (4), where u, v, and E stand for dis-
placements, velocities and total energy, respectively.
In fact, the scheme is third-order accurate. However,
there is no guarantee that the same high order of accu-
racy will be maintained by the scheme in the solution
of different nonlinear problems.

The time adaptive algorithm predicts the solution
for two different error tolerances, 1.0E-05 and 1.0E-
04, with 6; = 0.95 and v = 0.6 for both cases. Figure
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Figure 4: Rate of convergence at time ¢t = 10.0 seconds
for the nonlinear pendulum.

(5) shows the smooth results for horizontal accelera-
tions at the first second of calculations. There are no
high frequency numerical oscillations present in the re-
sponse. The solution obtained without time adaptivity
falls on top of its analytical counterpart. The adaptive
time-stepping routine allows time step changes right at
the very first time step of integration, which explains
the minor difference around ¢ = 0.1 seconds. However,
the scheme is capable of recovering from that slight er-
ror and brings the solution to coincide with the exact
one. Accelerations at the last two seconds of computa-
tion are shown in figure (6). Notice the error in period
elongation as large time step sizes are used. However,
it seems that the changes in time step size carried out
by the adaptive algorithm did not affect the ampli-
tude of the response. The estimated errors in energy
for the initial 10 seconds of computation are presented
in figure (7). It is important to remember that the
numerical dissipation inherently present in the scheme
results a total energy decay. Evidently, it turns out
to be Impossible for the algorithm to use the same
reference energy E(f) in equation (5), throughout the
entire computation of the soltuion. Thus, the calcu-
lation of the responce starts using E(I) equal to the
initial total energy of the system. Then, if at a given
time step the convergence criterion (6) is not satisfied
the time step size will be reducgd. At each time step
that At has to be reduced, this process goes on up to
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Figure 5: Horizontal accelerations for the simple pen-
dulum.
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Figure 6: Horizontal accelerations for the simple pen-
dulum.

a maximum number of repetitions, or until At reaches
a specified minimum value. In either case, if the er-
ror is not larger than 1.1¢*', the solution is accepted
but the new energy of reference is the average between
the reference energy at the previous time step and the
energy computed at the present time step. Results
for both analyses show the energy errors bounded by
their respective limits. In both cases, the maximum
value allowed for the time step size is At = 5.0E-
02. A spectral analysis of the solution for constant. -
At showed that At = 3.7E-02 is the largest time step
size that could accurately integrate the equations of
motion. Figure (8) shows that the algorithm keeps
the time step size within the necessary limit for ac-
curacy. During the entire period of the computations
the kinematic constraint, which guarantees the con-
stant length of the pendulum, is satisfied at the order
of machine accuracy, as shown if figure (9). The solu-
tion without adaptivity used 223 seconds of CPU time -
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Figure 7: Error in energy for the simple pendulum.
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Figure 8: Time step size variation for the simple pen-
dulum.

and 10000 time steps. The adptive algorithin with the
error tolerance 1.0E-05 used 57% of the computation
time above and reduced the number of time steps to
4341. Relaxing the error tolerance to 1.0E-04 results a
reduction in time of computation to 36% of the com-
putation time for a constant At, further reducing the
number of time steps to 2195.

Conclusion

An adaptive time-stepping algorithm is applied to
a time-discontinuous Galerkin scheme on the solution
of a nonliear constrained multibody systern. The re-
sulting systems of differential-algebraic equations are
larger than the original ones, fully coupled, and prone
to high frequency oscillations and instabilities of a
purely numerical origin. The inherent high frequency
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Figure 9: The kinematic constraint for the simple pen-
dulum.

numerical dissipation of the scheme completely elim-
inates the undesired instabilities. A single field for-
mulation of the time-discontinuous Galerkin scheme
using quadratic functions produces coupled systems
that are 3 times larger than the original system of
equations. The high computational cost of solving the
fully coupled systems of equations is reduced when a
predictor-multicorrector form is used in the compu-
tation of the response. The time adaptive algorithm
further reduces the computation time by enlarging the
time step sizes in certain instants of the solution. The
total energy of the system, which monitors the stabil-
ity characteristics of the response, is used as error mea-
sure. The time step sizes are adjusted such that these
errors are within a specified tolerance. The results pre-
sented showed excellent agreement with their analyti-
cal counterparts. The kinematic constraint present in
the second example is satisfied at the order of machine
accuracy, which confirms the high order of precision of
the scheme and the efficiency of the algorithm as well.
The results presented in this study encourages the use
of the algorithm in the solution of complex multibody
systerns, i.e., systems with large number of nonlinear
elastic members and several kinematic constraints.
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