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Abstract

A finite—element (FE) model for aeroelastic
analyses, is a vast idealisation of the actual
structure. In creating this idealised model, many
approximations must be made and the model then
tested against the results of a ground vibration test
(GVT). Subsequent to the GVT, the FE model
invariably requires modification; how to best carry
out such modifications has been the subject of a
large body of work presented in the literature over
the past 30 years, without any generally
satisfactory solution. More recently, the artificial
intelligence tool of genetic algorithms have shown
promise in the development of optimised FE
models directly from experimental GVT data for
simple structures and aircraft sub-structures. In
this paper, it will be demonstrated how such
processes can be used to optimise the FE model
for a complete aircraft using simulated GVT data
for an aircraft carrying underwing stores. Details of
how such a process may be used to give unique,
or minimum order, models will also be
demonstrated and discussed.

1.__Introduction

Mathematical modelling of complex systems
inevitably requires many assumptions and
idealisations (eg. compare the representation of
the structural dynamic model of an F/A-18 as
shown in Figure 1, with the real aircraft structure).

As the system becomes more complex, these
assumptions typically lead to a model with poor
predictive capabilities: this is the case with finite—
element modelling of aircraft structures for
dynamic analyses. Such an FE model is
developed when the aircraft is in the design stage;
when built, the aircraft is then subjected to a
ground vibration test and the FE model is typically
a poor predictor of the true structural behaviour.
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Figure 1. Finite—element model for structural
dynamic analysis of an F/A —18; such a model is a
considerable idealisation of the actual detailed
structure shown here on the port wing.

The question that must then be addressed is: how
should the model then be developed to better
reflect the true behaviour of the structure? A
process which has been proposed in Dunn™?, and
is further developed in this paper, involves
throwing away the initial model and developing a
new model based on the GVT data. The basis of
this procedure involves using the artificial
intelligence optimisation tool of genetic algorithms
to create an optimal FE model; where optimal is
defined as the model which gives the best
correlation with the experimentally determined
transfer function. Previous work in Dunn®™ has
demonstrated how such processes can be used
on the relatively simple models of an aircraft
tailplane and a truss structure. These models were
similar in that they involved relatively few _
unknowns. The complexity of such optimisations,
however, grows rapidly with the number of
unknowns. For traditional optimisation techniques,
this growth in complexity typically involves an
exponential growth in processing time as the
number of unknown parameters grows. In Dunn®
it is demonstrated how genetic algorithms can
result in far more efficient solutions than more
traditional processes for structural dynamic model
optimisation. In this paper, simulated GVT data for
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a General Dynamics F111C are used to
demonstrate how these processes can be used for
models with a large number of unknowns.

2. Genetic Algorithms.

The inspiration for GAs arose from the realisation
that the result of the principles of Darwinian
evolution in nature is the attempted solution of a
vast optimisation problem. Survival of the fittest
means that those individuals which are best suited
to their environment are more likely to breed and
therefore pass on some of their genetic material
into subsequent generations. Genetic algorithms
are a computer generated analogue of this
process where the better individuals are chosen
based on how they test against a specified cost
function. For the case of using a GA to optimise
mathematical models, the cost function is based
on a measure of how well the model predicts
actual measured data (or as in the case studied
here, simulated data). The GA is started with a
given population size of randomly generated
individuals —~ where each individual is a potential
complete solution to the problem. A value of
fitness is then assigned to each individual.
Breeding is done by selecting pairs from the
original population in a weighted random process
(where the weights are determined by the fitness
such that the better solutions have a higher
probability of breeding), and then swapping the
properties of these pairs in a random manner to
give rise to a new individual; this is done until a
new population has been created. The processes
of cost function evaluation and breeding etc. are
repeated, over and over, until some stopping
criterion is reached. There are many different
ways of applying GAs; details of how they are
applied for the case studied here can be found in
Dunn®,

For the reader interested in looking further into the
philosophy of GAs, some good starting points are
Holland® and Forrest®. Introductory reading on
the application of GAs can be found in Goldberg™,
Whitley®, Beasley ef af” and Mitchell"®,

3. General Dynamics F111C Model

General Dynamics created a very detailed finite—
element model of the F111C based on modelling
the detailed structure including spars, ribs, skins
etc. Based on the symmetry of the aircraft, only
one half of the aircraft was modelled. For dynamic
analyses, the mass and stiffness matrices created
by this FE model were analytically reduced to 80

degrees—of-freedom for the model with symmetric
boundary conditions. These 80 by 80 matrices
were acquired by the Australian Department of
Defence for aeroelastic analyses for Australia’s
F111C fleet. For the purposes of the analyses
carried out here, these reduced matrices have
been used to create simulated GVT frequency
response functions. The mass distribution for the -
original model is shown in Figure 2.

Figure 2. Mass distribution for General Dynamics
F111C reduced model.

The aim here is to take the simulated undamped
frequency response functions (FRFs) and attempt
to develop a beam/mass FE model which will give
a good approximation to these data. -

3.1 Simulated data

The model from General Dynamics is fully
constrained at a point on the fuselage just aft of
the wing attachment. This has the effect of
breaking the model into two: a forward fuselage/
wing model and an aft fuselage/empennage
model. The simulated data are generated by
applying sinusoidal loads at the locations shown
by the arrows in Figs. 3 & 4 and collecting the
FRFs at a range of freedoms, a few of which are
shown in these figures (26 measurement
freedoms were used in the analysis of the forward
fuselage/wing model, and - 16 for the aft
fuselage/empennage model).
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Figure 3. Diagram showing forward fuselage/wing
of an F111C as represented in that part of the
General Dynamics model. Simulated GVT
measurements were taken at 26 degrees of
freedom, four of which are shown here: 1, wing tip
heave; 2, wing tip pitch; 3, in-board store yaw,
and; 4, fuselage nose heave.
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Figure 4. Diagram showing aft
fuselage/empennage of an F111C as represented
in that part of the General Dynamics model.
Simulated GVT measurements were taken at 16
degrees of freedom, two of which are shown here:
1, aft fuse tip heave, and ; 2, stabilator tip heave

4. Creating an Optimal Beam/Mass Model.

The aim of the exercise here, is to take the
simulated GVT data from the General Dynamics
mass and stiffness matrices, and create an
optimal simple beam/mass model which gives a
satisfactory representation of the data. Optimality,

is defined by attempting to achieve the following
cost function:

N n

min(e(u,x)) = 2 Z"Z wilisx H -

=1 i=l

;L‘,', (1

where ¢, the error between model prediction and
measurement, is defined as a function of the mass
and stiffness properties, x and « respectively.

€ is defined as the sums of the absolute difference
between the moduli of the model FRF
predictions, 7(u,x), and measurements, y’, for

the n freedoms measured at the N selected
frequencies

A general beam/mass model is created for which
the geometry of the aircraft and .the positions of
model nodes are defined. Beam elements of
unknown stiffness are then used to join these
nodes and unknown masses are added to the
nodes. The GA optimisation will then attempt to
determine the values of these unknown stiffness
and mass properties by attempting to satisfy eqn.
1. Each beam can require up to four properties to
define its stiffness: extensional stiffness; bending
stiffness — out-of-plane; bending stiffness — in-
plane, and; torsional stiffness. Each mass can
require up to seven properties to fully define it:
offsets from the node in each of the three principal
co-ordinates; the magnitude of the lumped mass,
and; the rotational inertias about each of the three
orthogonal axes. In practice, however, all of these
possible unknowns are not required. In the case of
the wing, for example: for aeroelastic analyses,
the extensional stiffness and the in-plane bending
are of little value, so these are assumed rigid and
the remaining stiffness properties of out-of-plane
bending and torsional stiffness for each wing
element are all that is required. Similarly for the
wing mass properties: out-of-plane offset from the
node is considered zero as is the yaw inertia of
each mass element.

The constraints to the optimisation process here
are: the geometry is fixed — as has already been

described ~ and the properties must be physically - -

sensible; ie. masses and stiffnesses must be >0.
Within these constraints, the mass and stiffness
properties will typically be allowed to search over a
very large range covering a number of orders of
magnitude; for example the wing stiffness
properties were initially allowed to vary between
107to 10" Ib in”.
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4.1 Optimised forward fuselage/wing model

The initial modelling for the forward fuselage and
wing involved searching for 96 unknown
properties. A fundamental feature of such
modelling is that, a-priori, there is very little
information as to how complex the model is
required to be to give satisfactory agreement to
the experimental data (a measure of model
complexity can be taken as the number of
unknown properties required to define the model).

A method of determining models of minimal

complexity is described in detail in Dunn™ and will

be briefly described here:

* Run the optimisation procedure — in this case
a GA - a number of times such that there are
a number of results where the better cost
functions (eqn. 1) are very similar and the
model predictions give a satisfactory
representation of the experimental data;

e compare the properties found for these
results;

s where this comparison shows little variation,
assume the property is being determined
uniquely;

* where the comparison shows a great deal of

+  variation for similar cost function, assume that
either the property is not required, or that
property and one or more of its neighbours
can be combined into one.

e repeat this process until all parameters appear
to be defined uniquely and the model still
gives a satisfactory representation of the data.

To get beyond the first step in this process, the
initial model complexity must be sufficient to
enable a solution which will model the
experimental data; an example where this was not
the case will be seen in the next section on the aft
fuselage/empennage modelling. For the forward
fuselage/wing modelling, however, the initial
model complexity was sufficient. After going
through the above procedure a number of times,
the model complexity was reduced such that only
64 properties were required. Examples of where
the model complexity were reduced are:

+ the wing was initially described by nine beams
requiring nine bending stiffnesses and
torsional stiffnesses; this was reduced to
seven bending and torsional stiffnesses.

e roll inertias at each of the mass elements on
the wing were found to be not required, and

e pitch inertias at each of the mass elements on
the fuselage were found to be not required.
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Figure 5. Depiction of the optimised forward
fuselage/wing model and the model predictions
(dashed lines) compared with the original data
(solid lines) for wing tip heave (first graph) and
wing tip pitch. The circles on the FRFs show the
data points used in the cost function evaluation.
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A diagram of the optimised model and its
predictions compared with the simulated
measurements are shown in figure 5. Given that
techniques used to improve models based on GVT
data more commonly used modal frequencies, a
comparison of these is typically presented and is
shown here in Table 1.
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Mode GD model | optimised
(Hz) beam/mass(Hz).

1. wing bend. 4.07 4.04
2. fuse. bend 4.81 4.70
3. i/b store yaw 7.76 7.74
4. o/b store yaw 7.81 7.85
5. i/b store pitch 8.41 8.48
6. wing bend 10.1 10.0
7. wing torsion 12.2 12.3
8. fuse bend 15.7 15.7
9. o/b store pitch 17.2 17.2
10. i/b store sway 21.2 21.2
11. wing bend 23.1 23.1
12. wing torsion 27.9 27.7

Table 1. Comparison of modal frequencies for the
original GD and optimised beam/mass model.

4.2 Predictions based on optimised model

The optimised model can now be tested as to its
predictive capabilities. This will be done by re-
running the original GD model in two new
configurations: i. no underwing stores, and ii.
underwing stores and full wing fuel. These results,
along with the beam/mass model predictions, for
the bending freedom at the wing tip for
configurations i & ii are shown in Figs 6&7
respectively.
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Figure 6. Optimised model predictions (dashed
line) compared with GD model for the forward
fuselage/wing with no underwing stores.
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Figure 7. Optimised model! predictions (dashed
line) compared with GD model for the forward
fuselage/wing with underwing stores and full fuel.
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As can be seen in Figs 6&7, and comparing with
the wing bending behaviour in Fig 5, the behaviour
of the wing bending is quite different from that in
the original configuration at which the optimisation
was carried out. The predictive results, as shown
by the dashed lines, are generally very good.
Discrepancies do become apparent at higher
frequencies as is most evident in the case for the
full wing fuel with underwing stores case. Here,
the higher-order wing torsion mode — at 27.9 Hz in
the original configuration — has dropped to around
22.5Hz, but the model has predicted that it would
fall to 25Hz. Nevertheless, every other mode is
very well predicted.

4.3 Optimised aft fuselage/empennage model

A similar procedure to that used for.the forward
part of the model was carried out.for the aft model.
The layout of the model is as depicted in Fig. 8.
The initial representation required the optimisation
of 46 unknown parameters. As can be seen for the
model predictions shown in Fig 8, the stabilator tip
behaviour seems to be well modelled, but
examination of a freedom on the fuselage makes it
clear that a mode is not being represented.

Having a feature of the experimental data not

being represented by the model resulting from the - --

optimisation procedure in this manner, suggests
that the initial model representation was not
sufficiently complex. To investigate how the model
configuration should be changed to better predict
the measured behaviour, the nature of the four
modes of vibration in this frequency range were
examined, as shown in Fig. 9.
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Figure 8. Initial aft model configuration showing
stabilator tip heave (top graph) and fuselage
heave.
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Figure 9. Diagram showing the four modes of
vibration of the aft fuselage/empennage GD
model.

As can be seen in Fig. 9, the main feature of the
mode not being modelled is that it contains
significantly more engine motion than the other
modes. For the first model configuration, it was
intended that the engine could simply be
represented as an added mass on the fuselage
centre line; the results shown in Fig. 9 clearly
suggest this was wrong. The configuration was
therefore changed to explicitly model the engine,
as shown in Fig. 10, and the whole procedure
repeated. The resulting optimised model
predictions for the heave freedom on a fuselage
node are also shown in Fig. 10. The final model
required the optimisation of 31 properties.

15 frequcﬁcs;, Hz. 30
Figure 10. Aft model configuration showing the
optimised model predictions (dashed line) and the
original model data for a heave freedom on the

fuselage.

5. Complete F111C model

Given the completed two parts of the model, these
may now be put together as shown in Fig 11. This
model, as for the original data, is for the aircraft
with symmetric boundary conditions along the
fuselage centre line. ‘

Figure 11. Complete optimised F111C mode! with
symmetric boundary conditions.
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5 Conclusion

The greatest difficulty in tackling the problem of
optimising complex mathematical models - those
involving a high degree on interaction between
properties — arises from the solution time required
when more than a few unknown properties are
required. Previous work by this author has
suggested that the artificial intelligence
optimisation tool of genetic algorithms may be an
efficient tool for tackling such problems with a
large number of unknown properties. The results
presented here have demonstrated that such
methods can successfully overcome the problem,
of the number of unknowns by solving for a
symmetric model of an F111C aircraft. The
simulated data used were taken from a model
supplied to the Australian Department of Defence
by General Dynamics and the nature of this model
meant that the problem was broken into two parts:
the forward part of the model involved the
optimisation of 64 properties and the aft model
required the optimisation of 31 properties. For
traditional optimisation processes, optimising this
many parameters would be an almost impossible
task. -

It has also been demonstrated how such model
optimisation processes can be used to gain a
valuable insight into the complexity of the
mathematical model required to represent the
desired behaviour.
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