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Abstract. The iterative method for transonic
flutter calculation is developed. The problem of
unsteady flow near elastic deforming wings at
transonic Mach numbers is solved using
Godunov finite-difference method of Euler
equations integration. As initial approximation
of frequency and deformation shape the result
of flutter linear problem or experimental data
are .applied. The flow near the wing vibrating

with specified frequency and mode is analyzed

by nonlinear itransonic theory. Calculated
pressure difference coefficients are used to
obtain aerodynamic matrices through harmonic
linearization = procedure. Linear  flutter
equations with these matrices are solved in
frequency domain. The process is then repedted
up to flutter frequency convergence.

Proposed method is illustrated by some flutter
characteristic calculations for several
aeroelastic structures: standard AGARD wing
4456, fin with rudder, heavy transport
aircraft. Various parameters influence on the
transonic flutter is investigated.

The controllable equations of motion of elastic
aircraft are obtained taking into account
nonlinear unsteady aerodynamic loads in the
transonic flow. The method is proposed and
developed to solve time domain equations. The
comparative results of structure aeroelastic
behavior are presented for linear, harmonically
linearized and nonlinear transonic cases.

1. Introduction.

In the last decade there have been extensive
developments in computational methods in
response to the need for computer codes which
is available to study fundamental aeroelastic
problems in the critical transonic regime. The
computational methods provide a new tool
which can be used in the combination with test
facilities to reduce the cost and time of the
aircraft designing. Many difficulties arise in
the flutter analysis of modern wings. Numerous
experiments have shown that dips occur at

transonic Much number in the flutter
boundaries. This phenomenon is caused by the
motion of shock waves on the wings. To
describe of the physics of such moving shock
wave it is require to use the computational
methods solving nonlinear partial differential
equations for regions of mixed subsonic and
supersonic flow. The solution of the fluid
dynamics problem is usually accompanied by
the solution of the aeroelastic problem to
obtain the structural deflections, stability
limits and flutter speeds.

Some modern aircrafts encounter a phenomenon
known as a limit cycle oscillations (LCO),
which is a type of flutter where the
aerodynamic forces are essentially nonlinear.
Semi-empirical methods are currently being
developed to predict LCO but they require a
lot of wing tunnel experimental data(!).

Here results will be presented for iterative
method of calculation which combine linear
classical flutter analysis with Godunov finite-
difference  method of Euler equation
integration. For the computational flutter
investigations a software package KC-2 is
applied. KC-2 uses doublet-lattice method® to
compute airloads in subsonic flow and panel
method® in supersonic flow. The nonlinear
aerodynamic theory allowing to account for the
thickness of an airfoil, the amplitude of
vibrations and shock movement are used in
proposed iterative method (TRAN computer
code®). i

In the case of transonic flow where Eirloads are
essentially  nonlinear  the method  of
fluid /structure direct coupling is proposed
(TRTDR computer code). For both frequency
and time domain calculations the flow is
modeled by using the Euler equations of the
ideal gas.
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The purpose of the work is the description of
the transonic flutter investigation method.
Proposed method is illustrated by some flutter
characteristic calculations for several
aeroelastic structures in frequency and time
domain.

2. Aeroelastic equations of motion
t

Aeroelastic equations of motion are derived on
the base of methods which are developed in
KC-2 computer code. The Ritz method is used
in KC-2 when the deformations W  are
represented as polynomial functions of the
spatial coordinates. The whole structure is
represented by a set of thin, originally flat
elastic surfaces which can be arbitrarily located
in the space. For each elastic surface the
distribution of mass and stiffness is specified.
All elastic surfaces are joint in unified
structure by the elastic connections which
allow to simulate various fastening conditions
in the attachment points between them with

required accuracy.

The displacement W(x,z,t) of the aircraft
structure is represented by a set of N
polynomial terms:

N .
W(x,zt) = Zyk(t)fk(x,z) ,
k=1

where fi(x,2) = 2™z, mn=0,1,...

For each elastic surface the polynomial can be
chosen separately. The factors y,(t) are used as
generalized coordinates of the polynomial
method. The directions of the axes of the
coordinate system are shown in fig. 1.

The aerodynamic loads which may by found by
some aerodynamic theory or taken from
experimental data are acted on the elastic
surfaces in the flow.

For the calculation of the aerodynamic forces

acting on the aeroelastic surface the
displacements and the local angles of attack are
determined at the aerodynamic points.
Sometimes it is necessary to use the
deformation shapes of elastic surface
represented as the displacements in L points
which - are not the aerodynamic points (for
example, when the displacements are

determined from the calculations using the
finite element method or from the experiment).
Then the known interpolation formula is
used(®:

L
W(x,z) =D @R In R{? +b, +byx + byz

i=1

Riz = (x - x,-)2 + (z - zi)2

Unknown coefficients ¢; and b; are determined
from the known displacements in L points x;,
z; and from the additional conditions

L L L
Zdi=0 Zalxl=0 ] Zdizi=0
1=/ i={ : i=1

Thus we can obtain the matrices of the
equations of motion for the united vector of the
polynomial method for the whole elastic
system. For solving the dynamic aeroelasticity
problems (flutter, dynamic  response,
aeroservoelasticity) the equations are reduced
to the generalized coordinates corresponding to
the natural modes without flow. They can be
written in matrix form as:

CG+Dgq+Gq=Q?+Ré,+ F

(1)

y=Hyy+H;q +Hyq

where g=col(q,, q., 5) - generalized
coordinate vector including the motion of the
aircraft as the rigid body g, its elastic
deformations ¢,, control deflections &;

C, Dy, G - matrices of inertia, damping
and stiffness of structure;

Q7 - vector of generalized aerodynamic

forces;

&, - vector of actuator rod deflections;

R - matrix of actuator influence
efficiency;

F - vector of the external concentrated
forces; :

Y - output parameters vector including
displacements, angles, accelerations and
angular rates at sensor locations and also loads
in chosen sections of structure;

Hy, Hy, H, - matrices of transformation
from generalized coordinates, their velocities
and accelerations to physical ones.

In the case of the linear aerodynamics the
generalized aerodynamic forces in the equations
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of motion are often determined under the
harmonic assumption. In this case:

Q%=-pVD q-pV2Bqg+pVD%w

where D, B - matrices of aerodynamic
damping and stiffness computed for specified
reduced frequency (Struhal number);

p - air density;

V - true air speed;

D - vector of the gust efficiency;

w - gust intensity.

Solution of homogeneous and nonhomogeneous
equations  with linear aerodynamics in
frequency and time domains is considered in
References 6, 7.

The computation of the transonic flow about
the wing is a nonlinear problem and
computational results depend on both the
surface deformation and on its amplitude. It is
, necessary to note that in linear case the flutter
mode is determined up to any factor, while in
transonic case the vibrations with flutter
frequency should have specified amplitude
because unsteady pressure difference Ap(x, z,t)

depends on it. The airloads calculations are
based on the forced vibration method and the
principle of harmonic linearization.

®

As to determine unsteady pressure difference
Ap(x,z,t) it is necessary to specify previously
the wing deformations and vibration frequency
under flutter conditions. The results of linear
flutter problem are usually used as initial
approximation. After that the flow near the
wing vibrating with specified frequency and
mode is analyzed using nonlinear transonic
theory. Then the sine and cosine components of
main frequency are extracted from the found
dynamic pressure distribution Ap(x,z,t) and

new aerodynamic matrices are computed. The
equations of vibration in the flow are solved
anew. These equations have the same form as
in the linear case. Thus new frequencies and
flutter mode appear. The process is repeated up
to flutter frequency convergence. Usually
linear flutter analysis is performed for the
structure in the beginning. But there may be
some regions of parameters (Mach number,

1

reduced frequency, air density) in which linear
flutter is absent. For this reason one of the
vibration eigen mode and frequency (calculated
or experimental) may be taken as first
approximation. More detailed calculation .
algorithm is presented in Reference 4.

A lot of additional useful information about
dynamic response can be obtained from time
domain analysis in the. case of essentially
nonlinear system. When investigating the
transonic aeroelastic phenomena the direct
coupling numerical integration of the equations
(1) and Euler equations of. transonic flow is
executed in time domain. On each step of
integration the whole field of the velocities,
pressure and density are determined by the
Godunov method {4]. Boundary conditions in
the points of the aerodynamic grid of moving
oW W
ox ' oz
calculated through the vectors of generalized
coordinates and velocities

elastic surface w, are

W = XUq_ w(x,Z,t);

W _vevg; W xeug
ox oz
where X, X% X? - corresponding

polynomial transformation matrices;
U - modal matrix;

w(x,z,t) - distribution of the gust
velocities. -

Obtained  dynamic  pressure difference
Ap(x,z,t) is summed through the vibration
modes for the determination of the generalized
aerodynamic forces:

Qs = XTyTs Ap

where S - diagonal matrix of the
aerodynamic element areas.

Thus to determine the right hand of the .

equation (1) at the given time moment all field
of the flow parameters depending on the
preceding process, vibration amplitude and the
motion of shock waves is used. Integration of
the equations is executed by Euler method of
the 1-st order. For choosing the optimal
integration step the system with linear
aerodynamic is investigated beforehand.
Usually the step size is limited by the stability
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of Godunov finite-difference procedure rather
than elastic oscillations.

The examples illustrating the possibilities of
the proposed methods of transonic flutter
computation in frequency and time domains are
considered below.

3. AGARD wing 445.6

AGARD wing 445.6 is frequently used for
comparisons of the computational methods. The
comparative results are given in fig. 2 for the

variant "2.5 foot weakened model 3" ®). Four

first  vibration modes were taken for
calculations. Their frequencies are listed in the
following table:

No |f, Hz f, Hz Mode

' NASA TsAGI

1 9.6 9.56 1-st bending
2 38.1 38.09 1-st torsion
3 50.7 48.15 2-nd bending
4 98.5 92.04 2-nd torsion

The non-dimensional flutter speed coefficient
I7f for each Mach number was calculated using
linear unsteady subsonic and supersonic

aerodynamic theory, and iterative transonic
method.

As stated above in transonic flow the flutter .

speed depends on amplitude of oscillations. For
this reason as initial approximations the results
of linear flutter problem are used when the
mode shapes are multiplied on a certain
coefficient. Thus the dimensional amplitude can
be introduced in the procedure of solving the
equation of the wing vibrations in the flow.

On fig. 2 the results of TRAN-method are
represented for two values of the amplitudes of
flutter mode shape, corresponding to torsion
angle on the wing tip: 1 and 6 degrees. As it is
shown on fig. 2 the change of the amplitude of
oscillation can affect the transonic flutter
speed. This can be explained by the fact-that in
transonic dip the characteristics of flutter

motion are changed and the nature of
instability ~becomes essentially nonlinear. In
iterative  method  unsteady  aerodynamic
coefficients are computed with allowance for

the shock movement and its intensity changes -

caused not only by the displacement variations
but also by the velocity of the displacement.
The discrepancy between experimental data
and nonlinear theory is due to the presence of
the viscosity in the flow. (TRAN solves Euler
equations, the viscosity is not taken into
account). At large subsonic Mach numbers
nonlinear theory underestimates flutter speed

coefficient Vr in comparison with experimental

data. On the other hand linear aerodynamic
theory overestimates flutter speed coefficient

‘7f. Out of the transonic dip the discrepancies

between linear, nonlinear theory and
experiment are very small; the characteristics
of flutter become independent on vibrations
amplitudes.

Calculated results in time domain for flow
parameters, corresponding experimental flutter
point, are presented on fig. 3. At Mach number
0.96 two different types of the excitations are
used to start time process. In case a) force
2.5 kg is applied on the tip of the wing, in
case b) initial condition is specified as
deflection upon the first eigen mode. Wing tip
displacement indicates flutter. For both cases
calculated  displacements for .linear and
nonlinear theories are presented. As it is shown
on fig. 3 the linear process is damped,
nonlinear process is antidamped and flutter
frequency is 14.5 Hz. The comparison of results
in time domain and in frequency domain gives
satisfactory agreement.

4. One DOF Flutter.

The control surfaces transonic autooscilations
(buzz) were investigated numerically. This
phenomenon is characterized by the negative
aerodynamic damping in transonic flow .

The plan view of the fin having 10% of relative
thickness with rudder is shown on fig. 4. The
fin bending and torsion stiffness was specified
rather high, to have possibility to consider
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structure as a system with one degree of
freedom (DOF)!

The amplitude influence on the aerodynamic
hinge moment (5=8(t) angle of rudder
deflection) was investigated. Figure 4 gives

result of hinge moment coefficient m,é

calculation versus the amplitude & at Mach
0.95 and -vibration frequency ©=30 Hz. The
limit cycle is realized at the amplitude & when
aerodynamic damping changes the sign. The
peculiarity of this type of autooscillations is
that the occurrence of buzz is shock related. It
was found from numerical investigations that
the shock oscillations were synchronized, but
not in phase, with the motion of the rudder.
This phase lag between the shock wave motion
and the motion of the rudder plays a

- significant role in the mechanisms producing

control surface buzz.

Representative results from nonlinear transonic
method calculation in time domain for control
displacement are shown on fig. 5. If initial
amplitude 8 is smaller than limit cycle
amplitude, it increases with time up to limit
value. When time response process is started

from greater then limit amplitude, it is damped

at the same Mach number and frequency of
oscillation. It is need to note that an
estimations of limit amplitudes, receiving in
frequency and time domain procedures, have
not coincided exactly. Based on harmonical
linearization approaches proposed iterative
method gives only qualitative agreement with
direct coupling method.

Two process calculated on nonlinear transonic
theory gives qualitatively the same results. In
the first of them generalized aerodynamic forces
are computed on every time step by coupling
method. The second is based by the principle of

harmonically linearization. Linear aerodynamic

theory (Doublet-Lattice method) gives damped
time response process for any initial conditions.

5. Heavy transport aircraft.

The flight test results showed a_ self-excited
sinusoidal vibrations with limit amplitudes of

the major aircraft components at Mach number

0.86 and single frequency near 3 Hz. Linear

classical flutter analysis can not find any
instabilities in the mentioned above flight
parameters. The relative thickness of the wing
is 14.5% at the root chord and 9% at the tip. A
mixed subsonic/supersonic flow with shock
waves realizes on the surface of such wing. For
this reason nonlinear transonic theory is
applied for airloads calculations.

Mathematical model of aircraft elastic structure
includes 13 symmetrical vibration modes. The
fourth eigenmode is selected as initial
approximation for the iterative method. This
eigenmode has frequency f=2.40 Hz; mode
shape is shown on fig. 6.

The critical mode with frequency 2.84 Hz
appears in the next iterative steps. Fig. 7 gives
results of flutter calculations at few values of
the structure damping coefficient (decrement)
at Mach number 0.86. .The critical flutter
dynamic pressure Q depends on the amplitude
o of. flutter oscillations (torsion angle at the
wing tip).

Limit value amplitude can be found for fixed
Mach number and damping coefficient 9. If the
amplitude of vibrations is smaller than limit
value, then critical flutter mode exist. Flutter
absent if the amplitude is larger than limit
value. '

This phenomenon, probably, is LCO of the
investigated critical flutter mode. .In order to
estimate the limit cycle amplitude it is need to
explore the damping curve for the critical
mode. It has a zero crossing and zero incidence
in the point of limit cycle parameters. Flutter
mode shapes in two phases at =0° and ¢=90°
(corresponding to 1,/4 of the period of flutter
oscillations ) at 8 =0.05, o=3.5 degrees are
presented on fig. 8.

Time -process of the transonic
oscillations is shown on fig. 9. Load factor and
torsion angle on the tip of the wing were
calculated at the same flight -condition
(M=0.86) and the same initial condition for
nonlinear  transonic  case  and linear
aerodynamics (Doublet-Lattice method). It can
be seen from the figure that in transonic case
unstable oscillations appear; the amplitude of

flutter o
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the oscillation is limited through the time. In
linear case process is stable.

6. Conclusions.
A

One of the versions of mathematical model of
elastic structure in transonic flow is developed
for frequency and time domains. The model is
based on polynomial Ritz method and
Godunov's finite-difference method for solution
unsteady Euler equations.

Appropriate computer code is generated to
compute aeroelastic behavior of structure.

Computations on PC Pentium 200 Pro show
that it takes reasonable computing time to
obtain flutter boundaries and time domain
dynamic responses taking into account specific
‘transonic phenomena for practical structure.

Mathematical model and computer code allow
also to analyze aeroservoelasticity problems in
transonic flow, but a power of accessible
computers limits serious numerical
investigations in this field for us.

A

We hope that more power computers give us
opportunity to perform numerical simulations
of flight test in transonic flow for the elastic
aircraft with control system, including active
flutter suppression investigation. .
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