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Abstract Implicit in the linear analysis of buckling
behavior of isotropic plates .homogenous anisotropic
plates,or symmetrically laminated composite plates ,are

£

the three assumptions that, “ no additional inplane

”

deformations take place in the process of buckling ” ,

“ the external edged loads remain constant in the
process of buckling ” , and “ for a perfect plate,the
plate remains plane before buckling onset ” .

In the authors' priori work,it was pointed out that
the applicability of the above three mentioned
assumptions are worth to be questioned to a buckling
problem of unsymmetric laminates.To
unsymmetrically laminated composite plates ,due to
the stretching-bending couplings,before
buckling,inplane loads may cause a out-of-plane
prebuckling deflection,while in the process of
buckling,the bending of the plate may cause inplane
deformations as well as the altering of edged loads.
This phenomena is much similar to the way of
buckling of shell panels

In the present paper,based on a higher order
displacement theory including three midplane
displacements ,one stretching of normal,two rotations
of normals about the midplane.and two warps of the
normals,by using the variation principle,a formulation
for both buckling and thermal buckling was derived
from the system's total potential energy.The
formulation accounts for all of the effects of inplane
deformations,edged loads altering,and prebuckling
deflection on the critical buckling loads

The above three mentioned effects either as an
individual or as an arbitrary combination on the
buckling and thermal buckling loads are studied herein.
An eight degree of freedom finites element model is
used to compute the buckling and thermal buckling

loads and model shapes of a number of unsymmetric

with
conditions.the

laminates simply supported and clamped
that the

importance of the three factors take an order of first the

boundary results show

prebuckling deflection,then - the inplane
deformations,finally the édged loads altering.espically
to antisymmetric laminatesithe effects are too
important to be neglected.
1.Introduction

Buckling and postbuckling behaviors of laminated
composite plate and shell panels have gained great
attentions in the past few decades. Leissa[1,2] made a
comprehensive review of the current states of this art.
From his review papers, it can be seen evidently that
most of these works focuss on symmetric orthotropic
composite plates. Some works focuss on symmetric
anisotropic composite plates. Only a few works dealt
with unsymmetrically laminated composite plates but
confined in conditions of orthotropic or angle-ply
plates.Works dealt with unsymmetric arbitrary
anisotropic composite laminates are much more limted.
This condition may be resulted by the following two
factors:

First, The

anisotropic composite plates result in a full terms

stretching-shearing  couplings of
governing differential equations of buckling. Second,
The stretching-bending of unsymmetric composite
plates make the bending and inplane deformations
coupled , There fore consequently result in a more
higher-order set of governing diferential equitions of
buckling. Combination of the above mentioned two
factors, make the governing equition of buckling
extremly complex.When using the Reissner- mindlin
theory, the order of the system of governing deferential
equitions is ten ,the number of boundary conditions is
five for each edge, and as a result, the buckling
problems of unsymmetric anisotropic composite plates
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are much more difficult to solve analytically.

Reissner and Stavsky[3,4] developed the first
satisfactory theory which including stretching-bending
effects.

Ashton[5] developed an approximate theory in
which the bending stiffness were replaced by the
"reduced bending stiffness".But results show that the
approximate theory is not accurate for all problems.
Jones et al[6] studied the influence of stretching-
bending on buckling loads. The results show that
stretching-bending couplings reduce the stiffness of
composite laminates. and consequently, reduce the
critical loads.Chia[7] and Prabhakara[8] analysised the
buckling and postbuckling of unsymmetric laminated
plates, by using an nonliear methods. Whitney[9] and
Huif10]dealt
orthotropic plates. Hurris[11] analysis the buckling of

with the buckling of unsymmetri

unsymmetric  orthotropic  plates under biaxial
compression. Jensen and Lagace[12,13] inve_stigated
the influence of stretching- bending couplings on the
t;uckling and postbuckling behavior by using a
Rayleigh- Ritz method and experiments. Rao[ 14, 15]
studied the buckling behavior of symmetric or
unsymmetric

anisotropic sandwich plates with

laminated faces using the Rayleigh-Ritz methods,
where the deflection and two shearing components are
assumed to satisfy the boundary conditions.

Jeng-Shian Chang[16] analyzed the buckling and
thermal buckling behavior of antisymmetric angle-ply
laminates by using FEM according to a higher order
shear theory. But none of the above mentioned works
have taken into account for the prebuckling deflection.
the enplane deformations and external edged forces
altering when buckling onset. The present paper will
aim to develop a formulation which take into account
for the all above mentioned factors.Formulation
methodology

Generally, when linearly analysis the buckling
behavior of isotropic or homogenous anisotropic
plates, following two assumptions are introduced in or
implicited [17]:

First, no additional inplane deformations take
place at buckling onset. ,
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and
in-plane deformations are independent at buckling
onset.

Second, the external edged loads remain constant
at buckling onset. As had pointed out in the authors’
prior work[18],these two assumptions may be correct
for isotropic or homogeneous anisotropic plates. But,
they are worth to be questioned when linearly analysis
unsymmetric anisotropic laminates. Because, due to
the stretching-bending couplings in unsymmetric
laminates, the inplane state is coupled with the
bend state. At buckling onset, there is out-of-plane
displacements take place, this may unaviodably cause
inplane displacements and edged loads altering. This
phenomena is much similar to that of shell buckling.
there fore, in the present paper, the above two
assumptions are neglected.

2. Formulation
2.1 potential energy of the pre-buckling state
According to the fundamental theory of composite
relations in

material ‘mechanics, the stress-strain

arbitrary one layer are:

- T,
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Displacement field just before buckling onset is
assumed to be u. v. w, they have the following
forms which includes transverse. shear and normal
stretch:

UXY.2)= U o)tz ¥ (xy)+ 28 b ()
VYD=V &)tz v N F 2 (xy) @)
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Where, u,,v, and w, denote the displacements at

v ,.9..9,

rotations of the normals to the midplane about the x,

the midplane(z=0), v , are generalized
y axes respectively , @, is the stretching of the nomal .

The general strains can now be derived using the
assumed displacement field, in equation(2).

s = _ o ow
e Ty T
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Then in-plane and through-thickness strains are:

<e>=<e e,y &> =<t >txktd <
Where
SEPT St fg Yoy 0>
ou, v, 2
=T o To Py,
ox oy 0’)/ Ox
<= <k k k k>
. Sy, 5 Sy .
= ’l{/.\' ,\) Wx+ W) 2¢-)
Ox & &y ox :
<= <ng n,n, 0>
56, O op,
= G K N

Ox oy oy Ox
The inter-laminar transverse strains are:
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The total potential energy of the pre-buckling state is
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Equation(3) is equivalent to equation(29) reference
[16].

Because it is a equilibrium state before buckling
onset, according to the total potential energy principle,
the first order variation of the total potential energy
should be zero.

oI1=0 - 10

2.2 formulation of critical buckling load

Buckling shape is assumed to be similar to

‘| displacement filed of prebuckling. they take forms as| .

following;:

u(x,,2) = 1y x, )+ZW\( 3)+2° 4, (x,y)
;(x Y,z )—~v0(
w(x,y,2) = wy(x, y)+z (

Since the

buckling is basically nonlinear

phenomena, the Von-Karman's large deflection
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nonlinear strain-displacement relations should be

adopted here. So, the general strains are
(¢,)=<¢c, & v >
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According to equation(3),the the total potential energy
at buckling onset yields.
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It is worth to be noted that the meaning of general
N, and N |
that of the

equation(9).The former ones are the edged boundary
forces on an equilibrium state, the later ones are the

N ..

different

forces in equation (3) is

form force in

general

internal forces of the system.
N,, N

y? xy

In an equilibrium

N

and

state,N _, are equal toN _, v

N

buckling onset,

« respectively on the boundary. But in a state of

due to the stretching-bending

couplings, N , N, ny may alter from their initial

values, and take values evaluated on the boundary.
The first order variation of general strains can be
obtained form equation(6) ( For semplicity we denote
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The second order variation of general strains are as
following,

Since w is small values at buckling onset, the

higher order terms of w o~ @ . can be neglected.

Then the second order variation of the total potential
énergy are:

S = 8711, + 6711, + 8711,
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From equation(13),it can be obviously seen that, if

the external edged boundary forces remain constant at
buckling onset, 521_12 will take a value of zero.

To isotropic or homogeneous anisotropic plates,
because no stretching-bending couplings, general
internal forces N, N,, N, will equal to the external
edged loads at the equilibrium state, equition(13) will
be exactly same in form as equation(19) shown in
reference[17}. If we don't take into account for
prebuckling deflection and inplane deformation, then

5°1.

equation(39) in reference[16]. Here, we take into

equils zero,equation(11) is equivalent to
account for the altering of external edged loads and
inplane deformations at buckling onset, and also take
into account for the prebuckling deflection caused by
stretching-bending couplings. Because only the state at

then w
the

buckling onset is interested in, is a

infinitesimal  perturbation, and prebuckling

- |deflection is generally a small value too, higher order

terms of them can be neglected . The prebuckling state
is much close to the state of buckling onset, so the
deflection at buckling onset can be replaced by the
prebuckling deflection infinite close to buckling.|-
therefore, result in linearization of equation(11).In
equation(11), & *IT, represent the energy increments
induced by the boundary loads altering, and & °I1,,

represent energy increment induced by pre-buckling
deflection. If assume boundary loads remain constant
in buckling, and neglect the pre-buckling deflection,
then equate ion (11) equivalent to equation(39) in
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reference[1 6.]. 0 0 0 o f” o o0 o
According the work of Washizu[19],the second gx 5
order variation of a system's total potential energy is [ L-] _{0 00 0 o0 55 (U
always positive definited. When the system reaches its ) 00 0 o o J 0 0
critical state, the second order variation of the system's dy Ix
. . . 0 0 0 0 0 0 0 0
total potential energy take a minimum value of zero. - -
That s { ‘{{{0}}‘} “[5.] {a1) @
£ :
S’TI=0
5(5217) -0 a7 Where
| (2= 1l2a] [2a] -~ [5.]
3.Finite element methodology [B;,-]= [L4]N,~ (i=12,-.8)
Here,a 8 node isoparamater element is used to 00 1 0 0 0 f S
obtain numeracal result.If we denote N i(i=1,2.-++,8) 3
shape functions,then the general strains and their [L ] _ 0 0 0 1 00 y - 0
variations can be written as ) 0 0 0 0 3 0 0 4
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Then
(e.)=(a)B..] (24)
(es)= (a)Bo.., ] (25)
(e,)=(a")[80, ] (26)

If no edged loads,then total potential energy of
element at prebuckling state is :

e [[{a){a] Lala)+{a] o8] {s] 5] 4] 4]
18] [E[B]+2[B_ 1F[8)+]8] 0} [8]a)ar
3 Masridiana - ([(s)(a] 2.0 5] 0]
27
The system’s total potential energy is a sume of all
elements’ potential energy;that is

n:in”
e=1

According to 6 IT= 0 then matrix of steffness and

(28)

loads expectively are:

[l Jf (a1
28] EE[B ]+2[B [F][B] 8]

' ols,)+[8,) (118, )+ 4B.) (A,
DBk

‘ 29)
D..)+[Bp.]+[8,][p..] )R
. (30)

Similarly,the system’s total potential energy at

3= 00 (s

buckling onset , is a sume of all elements’ total

potential energy,that is

S = §M° €1y
e=1

The second variation of element’s potential energy
&1 =[l<a > [8] [+ [8T[D[8]+[8} [#]B )+ {8 ] [£]5]
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Where

\&c]=21<a4{ [ 4B, J145] 45 1HE} R J 8]
{8 [1HB)8,J1dBR A8} dB]
+[R i8] lar

[x:]= [ e[z

(33)

[ Iv8.J+ 28] 1R]8,)+[5,] 1] 8] )a )i
(34)
Then we obtain
S = éio“zﬂ“ =< A > ([K]+ [K"’]+ [KED{A}
(33)
where in equation{35)

(K]1,[K_ ]1,[K . ) are steffness matrix.
According to 5 (52 H) = () .then obtain
(k1+ [, ]+ [&,]){a} =0 (36)
Equation(36) is a nomal engenvalue

problem.Compared to equation(60) of reference[16],
there is a matrix [K | ].

We
know [K 1 and [K ] is function of prebuckling

According to equation(33)and equation(34),

deflection and general internal loads

respectively.Because the critical loads and critical
thermal temperature are not known,we can not
] and [K

immediately obtain [ K ]-but we can
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computing.‘the diplacements and general loads caused—
by unit edged loads and temperature,Because it is
linear before buckling,we obtain

wo(AT)= AT e w, (1)

$.(AT)= AT « $.(1)

[N(aT)]= AT «[N(D)]

[R(AT)]= AT o [R(1)]

[F(aT)]= AT« [F()]

According to equation(33) and equation(34),we obtain.
[£.Ceo(am)0.(am))]= aT[k, (v, (1) 4.(1)]
[Kg([N](AT),[R](AT),[F](AT))]=AT[KA[N(I)],[R(1)],[F(I)])]
Then equation(36) can be written as the following

engenvalue equation

[(k1+ar((k o]+ [k DJfat =0 €]
4.Numerical Exemple and Discussion
The exemple model is same as that in
reference[12],the material properties are.
: E, =139.3GPa, E, =11.1GPa, G,, =4.9GPa,
" G;3=1.9GPa,v,=03. v =021 v _=0.33

a, =—021E-6

, =1.0E-6
thickness of each

is: 254 X 254(mm’).

In case of inplane mechanical buckling,boundary

mm/(mm + F)
a, = mm/(mm -« F)

layer :t=0.125mm.,plate size

condition of two side simplv-supported and two side
free is considered:
U, =y =4 =w, =0

at x=0,a

aty=0,a free

In case of thermal buckling,
atx=0,a and y=0.a
u(l = v(b = I//_\' = l//\ = ¢\' = ¢| = 1/‘)“ = O
The numerical results of critical loads are given in

table.1,and thermal buckling critical temperature In
table.2

Table 1 Critical loads account for ecfects of the three factors

presentf A | B C D |E

Table2 Critical loads account for ecfects of the three factors

stackling sequence F |G
(0,797, 194, 190 | 193 | 1914194 |191 1193 1 192
f0,/90 /90,101, 215 209 [ 211§ 2131214 |214 {212 {210
[0,/90 710,119 1, 187 180 § 183 | 184{188 {186 {184 | 182
[0, /745 , 110, /145 , /0, 1,164 | 155| 158 161163 {164 | 159 1574{
[0, /745, /00, /1445, /0, 1} 159 1490 152 154158 156} 151} 150

where in the tables:

A-—Acount for all three factors.
B---Acount for prebuckling deflection only
C---Acount for inplane deformation only
D---Acount for edged loads only -
E---neglect prebuckling deflection only
F---neglect inplane deformation only
G---Neglect edged loads only

From table 1,it can be obviously seen that the the
effects on buckling loads is mainly contributed by
prebuckling deflection ,secondarly the inplane
deformation ,finally the edged load altering especialy
to antisymmetric laminates ,the effects is too great to
be neglected.

From table 2,it is shown that both prebuckling
inplane deformation and.prebuckling deflection effect
on the buckling critical temperature ,but not as great as
in the mechnical buckling .In all cases,the effects of
the prebuckling deflection is greater than inplane
deformation.

5. Conclusion
In this paper a formulation ,which take into account
the effects of deflection.inplane
deformation and edged loads altering,is developed by

prebuckling

using the variation princeple. A eight freedom finite|

element is used to numerically calculate the buckling
innlana lnade ond a-iizg] temperature.the result show

deflection have an important

stackling sequence refer[12] | present] A B C D E F G | 'sof unsymetric laminates.
[0,/9 7, 7.2 7.18.. 1 6.9({70 {7.16]7.19 }7.17 [7.10|7.07| ric laminates,the effects is too
[0, /90, 490, /0,1, 8.3 0827 | 825 826 823] 827 | 824 8.27| 825| d.
0,19, 70,491, |53 525 487487 [523] 527 {525 a0 |aso| leference

- ling of laminated composite
(0, /45, /10, 1145, 110, || 5.2 518 | 4851 48415111518 |5.14]487]486
[0, /45, /0, /45, 10, | 49 4.72 {431 [ 4.40 |463[471 [469 (443 | 446
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