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Abstract

The modal-based approach to aeroelastic opti-
mization with static aeroelastic and stress con-
straints is extended by adding static deflection
modes to the modal basis. The optimization pro-
cess starts with a reduced-size model that uses low-
frequency normal modes of the baseline structure as
fixed generalized coordinated. Static deformations
in design cases calculated along the optimization
path contain local modal-perturbation information
that is not included in the modal basis. These
modes are orthogonalized with respect to the modal
basis and added as new generalized coordinates.
With this expansion, the modal-based optimization
becomes more efficient and it convergences to the
exact optimal design. Numerical example with re-
alistic fighter-aircraft model demonstrates practi-
cal applications with CPU speed-up factors of 5-
10, compared to the regular discrete-coordinate ap-
proach, with negligible loss of accuracy.

Introduction

The desire for efficient procedures for optimal de-
sign of complex structures motivated the develop-
ment of reduced-size optimization schemes where
calculations of stability and response parameters,
and their sensitivity to changes in the design vari-
ables, are based on a set of low-frequency vibra-
tion modes of a baseline structure. The modal ap-
proach is especially attractive in multidisciplinary
cases where the excitation loads are affected by the
structural response, such as in aeroelastic and con-
trol augmented systems.

Commonly used structural analysis and opti-
mization schemes!~* use the modal approach in the
dynamic response and stability disciplines, but the
static aeroelastic and stress disciplines are treated

by the discrete approach with typically large stiff- .

ness matrices with thousands degrees of freedom.
An example for a discrete-approach optimization
code is the Automated Structural Optimization
System (ASTROS)! that was developed to provide
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a multidisciplinary analysis and design capability
for aerospace structures. The various disciplines
in ASTROS include static and dynamic structural
analysis, aeroelastic analysis and some features of
the interaction with the control system.

The extension of the modal approach for ap-
plication in optimization with static aeroelastic
constraints was first presented in Ref. 5 and
later integrated in an aeroservoelastic optimization
scheme®. The modal approach was extended to deal
with static stress constraints” by using a modal-
perturbation scheme. A way to deal with local
stresses due to concentrated loads by using ficti-
tious masses was pointed out in Refs. 8 and 9. Fur-
ther developments of the modal approach for prob-
lems with static aeroelastic and stress constraints,
and their implementations in ASTROS, was done
in Refs. 10 and 11. The ASTROS implementa-
tions take advantage of the fact that both modal
and discrete structural coefficient matrices of the
baseline structure are saved in the same data base
and can be combined effectively throughout the op-
timization process. A further enhancement of the
modal-based approach to optimization with static
disciplines was it application with parts of the struc-
ture subjected to static condensation!?.

The formulations in Refs. 7, 10-12 used a fixed
generalized coordinate basis (the normal modes of
the baseline structure) throughout the optimiza-
tion, with the displacement vector for stress analy-
sis of each design case re-evaluated in every design
iteration. Being affected by the modal perturba-
tions mentioned above, these displacement vectors
contain valuable information which is not contained
in the normal modes. This information is used in
this paper for expanding the modal basis in sub-
sequent iterations. The use of static displacement
modes as reduced-basis generalized coordinates for
reanalysis was suggested in Refs. 13 and 14 with
applications to truss structures under fixed loads.

Modal Equilibrium Equations

Structural analysis and optimization with aeroe-
lastic considerations using finite-element codes such
as ASTROS' and MSC/NASTRAN? start with the
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definition of a structural model and ny, global de-
sign varlables. A description of the discrete coordi-
nate sets and the associated structural matrices at
the various model-construction and analysis stages
is given in Appendix A. The matrices are first as-
sembled with respect to the g-set displacement set.
The application of displacement constraints reduces
the model to the f-set coordinates by eliminating
the dependent ones. The optional Guyan’s static-
condensation process omits the user-defined o-set
coordinates, which reduces the model to the a-set
coordinates. The partitioning out of rigid-body ref-
erence coordinates, when the structure is free, re-
duces the a-set model to the l-set discrete coordi-
nates in which the equilibrium equations are solved.

The modal coordinates are based on an eigenso-
lution with the a-set matrices [K,,) and [My,] of
the baseline structure. The resulting set of normal
modes [¢,] satisfy the eigenvalue problem

[Kaa][#a] = [Maa][¢a][A] (1)

where [}] is a diagonal matrix of the corresponding
eigenvalues, where the first n, rigid-body eigenvec-
tors are zero.

The basic assumption of the modal approach in
structural analysis and optimization is that the dis-
placements {u,} (static or dynamic) of the modified
structure in response to external excitation can be
adequately expressed as a linear combination of the
baseline modes:

{ua} = [J’ar]{fr} + [ael{ée} (2)

where {¢,} and {{.} are vectors of the generalized
rigid and elastic displacements, [¢qe] is the ma-
trix of n. low-frequency elastic modes taken into
account, and [@,,] is the matrix of n, rigid-body
modes defined by enforcing [¢,,] = [I], where [¢,]
is a partition of [¢,,] associated with the rigid-body
reference displacements {u,}.

The substitution of Eq. (2) in Eq. (A-7) of
Appendix A, and premultiplication by [¢,]T yields
the equation of motion in modal coordinates, where
the number of degrees of freedom, n, + n., is typi-
cally several orders of magnitude smaller than the
number of discrete degrees of freedom. In modal-
based static analysis, the elastic accelerations are
neglected and the modal equation becomes!®

[K(l ]{ESH [ AAZ: ] (€)= [ g%: ] (P} (3)

where [Kec], [M,,] and [M.,] are partitions of the
generalized stiffness and mass matrices. [K,.] is
diagonal and [M,,] = 0 for the baseline structure
but not for the modified one. The unit contribu-
tion of each global design variable to the general-
ized matrices is stored in a modal data base and

used to update the matrices of Eq. (3) through-
out the optimization process'®. This eliminates the
need to reconstruct the discrete-coordinate matri-
ces. Equation (3) can be solved for {£.} and {£,}.
Equation (2) can then be used to recover {u,} for
stress/strain analysis. In static aeroelastic cases,
{P.} is an aerodynamic loads vector which is a func-
tion of {{.} and the aircraft trim variables.

Linear static aeroelastic codes are commonly
based on aerodynamic panel methods that produce
Mach dependent force coefficient matrices that re-
late aerodynamic loads on the panels to local an-
gles of attack. Pre and post multiplications of
the panel matrices by modal deflections and slopes,
transformed to the aerodynamic grid by spline tech-
niques, generate the steady aerodynamic force co-
efficient matrices [A,,], [Are], [Aer] and [4..] asso-
ciated with the rigid-body and elastic modal dis-
placements. The splined modes can also be used to
generate the generalized force coefficient matrices
[Ars] and [A.s] where the subscript & relates to the
vector {§} of trim variables such as angle of attack,
control surface deflection and roll rate.

The formulation and solution of static-aeroelastic
equilibrium equations in modal coordinates were
presented in Refs. 10 and 11, which assumed that
the static-condensation option is not used, namely
[Kaa] = [Kjf] and [Moq] = [M/;]. The effects of
static condensation are formulated in Ref. 12. A
general form of the equilibrium equation is

—qArr —qAre M, &
—qAer Koo — qhAce M., ée
M, MT 0 .
qAr(S
= qug {5} R (4)
0 -

where ¢ is the dynamic pressure. The last row
in Eq. (4) relates rigid-body displacements to the
elastic ones. For the baseline structure [M,,] = 0
and hence {£.} = 0. However, when the structure
changes, a non-zero {¢,} is needed to enforce or-
thogonality between the elastic deformations and
the rigid-body modes!®. The elimination of {&}
and {£.} from Eq. (4) yields the trim equation

[Mr:){&:} = alAr5]{6} (%)

The flex-to-rigid ratios between terms in [A,s] of
Eq. (4) and [A,s] of Eq. (5) define the aeroelastic
effectiveness parameters which can be used as op-
timization constraints. The solution of Eq. (5) for
the n, free trim variables (where n, is the number
of rigid-body modes) and the recovery of {£,} and
{€c} by Eq. (4) facilitates the calculation of the net
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loads

(P} = [P11{6}+[P21{@}+[P31{se}—[Maa][qsa,}{‘(zg
where [P;], [P,] and [Ps] are the aerodynamic load
matrices due to the trim parameters and modal dis-
placements.

It can be observed that the trim variables, net
loads and effectiveness constraints are functions of
the design variables. The differentiation of Egs.
(4-6) with respect to the design variables results
in analytical sensitivity expressions'®. The order
of Eq. (4) is typically 2 to 3 orders of magni-
tude smaller then the equivalent one in common
discrete-coordinate schemes, which facilitates huge
computation time savings in modal-based optimiza-
tion with static aeroelastic considerations. The ac-
curacy of the modal approach has been shown to
be very high in several realistic static-aeroelastic
design studies®7:10-12,

Stress/Strain Analysis
Element stresses and strains can be related to the
structural displacements by

{o} = [SUJ{w} (7

where [SUj] is a fixed matrix and {w} is a subset of
{us}, obtained after clamping n, selected degrees
of freedom to eliminate rigid-body displacements.
One can calculate the displacement vector by the
basic modal assumption of Eq. (2), but the ad-
equacy of the substitution of the resulting {u;} in
Eq. (7) for calculating stresses is questionable. Ref-
erences 10-12 showed that, with a fair number of
elastic modes (typically 20-50) taken into account,
the basic modal assumption is adequate for stress
analysis, but only when the baseline structure is
considered. When applied to a modified structure,
the use of baseline modes might yield grossly inac-
curate stresses and strains. The most accurate way
to perform stress/strain analysis is by updating the
full finite-element stiffness matrix and solving for
displacements under the updated loads of Eq. (6).
This hybrid approach (modal-based trim followed
by full-order stress analysis) is easy to implement
when the modal and discrete schemes are integrated
in one code!l. It is much less inefficient, however,
than the modal-based alternatives discussed below.

Reference 7 modified the basic modal approach
by supplementing the modal data base with modal
perturbations. The first-order displacement vector
for stress and strain analyses of the modified struc-
ture is expressed as

{u} = {u}s + {AuM} (8)

where {w}, is the elastic displacement of the base-
line structure under the modified net loads, and

{Au.,(l)} is the incremental displacement change due
to forces applied by the added material on the base-
line structure. The first term of Eq. (8) can be for-
mulated by the mode-displacement (MD) approach

as®

{ul}bMD = [¢le] X

([I] + [Kee]b_l [i(”i - ”b;)[Kee]iJ> {1 (9)

=1

where [Kc.]s is the generalized stiffness matrix of
the baseline structure and [K..]; is its derivative
with respect to the ith design variable v;. Al
ternatively, when the discrete and modal-based
codes are integrated, it is more effective to use the
summation-of-force (SOF) approach using the al-
ready decomposed baseline stiffness matrix [Ky],
to calculate

{wlosor = [Kuly {P} (10)

where {F,} is the {u; }-related subset of { P,} of Eq.
(6). Comparisons between the use of the MD and
SOF approached in modal-based optimization are
given in Refs. 11 and 12.

The second term in Eq. (8) is

Ndy

PRCE vbi)[¢F1]i] {e.} (11)

i=1

{AuM) = [Ky);!

where O]
. u
[ori = G [die]

are modal force perturbation matrices that are
stored in the data base before the optimization
starts'®. Analytical expressions for the sensitivity
of stress and strain constraints in design maneuver
load cases, which take into account loads redistri-
bution effects, are given in Refs. 10 and11. Ref. 11
used the first-order displacement approximation of
Eq. (8) to calculate higher order approximations in
an iterative process. It improved the accuracy of
the resulting stresses, but somewhat slowed down
the modal-based process. In an optimization pro-
cess based on several design steps, it is more ef-
fective to use the first-order displacement vector at
one step for defining a generalized coordinate that
expands the modal basis in the following step, as
shown below.
Expanded Modal Matrices

Static modes can be added to the modal basis af-
ter the baseline analysis and the first design step are
completed. The starting point in defining an addi-
tional mode is the incremental displacement change
of Eq. (11), as calculated in the previous design it-
eration, which can be expressed as

{1} = [Kul; 1 {P) (12)
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where

I

> (vi— vbi)[qul]ijl {é}

i=1

{A}=

where {£} is the vector of generalized elastic de-
flections in the previous iteration.

The deflection vector {q;, s } is orthogonalized with
respect to baseline modes [¢.] by

{61} = {5} — [$ee)[GKeel; o) T{R}  (13)

which can be shown, by using Egs. (A-7), (2-3) and
(12), to be orthogonal to the existing modal coordi-
nates with respect to the baseline stiffness matrix,
namely

[61e]” [Kuls{dis} = {0} (14)

The first static mode is added in the second it-
eration, with Eq. (12} calculated with the origi-
nal data-base matrices and the baseline {€.} of n.
modes. The data-base matrices are then expanded
such that the analysis and sensitivity of the mod-
ified structures can be performed as described in
Ref. 11, but with the expanded basis of n, = n.+1
modes. The baseline modes matrix is expanded by

(f:]=[ e o5 ] (15)

The baseline generalized stiffness matrix becomes

b= e 2] e

where, as implied by Egs. (12)-(14), the added di-
agonal term is

K = {¢15}T[Kll]b{¢ls} = {¢ls}T{PI} (17)
The baseline [M,,] in Eq. (3) is expanded by

0
(o= | (o) | 09
where {¢a,} is the merge of {#is} and zeros at the
nr clamping coordinates discussed after Eq. (7).
Subsequent iterations are performed with the ex-
panded data-base matrices. New static modes are
calculated at the end of each iteration. These

modes affect the model in one of three ways:
1. If the number of already added modes n; is

equal to a maximum number n,___ specified

by the user, the new mode is orthogonalized
" with respect to the first n. + n, — 1 modes and

then simply replaces the last added mode.

2. If ny < ng,,,, the new mode is orthogonal-
ized with respect to all the existing ne + n,
modes and its K5, value is calculated. If
K, > Ko, x 1078 (of the first elastic mode),
the mode is added to the generalized coor-
dinates as described above (with the already
added static modes treated 'as normal modes).

3.0 Koo, < Kooy X 1075, the new mode is not
added to avoid singularity of the expanded
{Ifzz]b.

-

The aerodynamic force coefficients associated
with the added modes are used to expand the gen-
eralized aero matrices in the static aeroelastic trim
and loads equations. In this way, the added modes
improve also the accuracy of the aeroelastic trim
and effectiveness solutions along the optimization
path, which were not affected by the model pertur-
bations of the previous section.

Numerical Example

The numerical example is based on a generic Ad-
vanced Fighter Composite-wing (AFC) ASTROS
model with an all movable horizontal tail and
four control surfaces on each wing where only the
two trailing-edge ones used for maneuvering. The
USSAERO! aerodynamic model is shown in Figure
1. The structural model consists of 1276 grid points
and 4449 elements, and has 3762 free degrees of
freedom with symmetric boundary conditions and
3797 with anti-symmetric ones. Top view of the of
the entire aircraft and of the wing structural mod-
els is shown in Figures 2 and 3. The wing box is
divided into 13 zones. The thickness of the 0, +45
and 90 deg direction plies in the upper and lower
skins are used as design variables (for a total of 78
design variables). The structural arrangement and
the design zones are identical to those used in Refs.
10-12, except that the wing skip there was made of
aluminum.

100 Y fin}

X [in}
Figure 1: AFC aerodynamic panel model
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Figure 2: AFC wing-tail-fuselage structural
model]
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Figure 3: AFC wing structural model

The wing box was first optimized for minimum
weight under the strain constraints of the 9g sym-
metric pull-up maneuver in Table 1. Modal-based
optimization runs were performed with 48 sym-
metric elastic modes and 49 anti-syrnmetric ones.
Results for modal runs with various strain analy-
sis options, with and without static modes added
to the modal basis, are compared below with re-
sults obtained by a standard discrete-coordinate
ASTROS run. Optimization histories for the ref
erence discrete optimization case, and for various
modal-based options without adding static modes,
are compared in Figure 3. It can be observed that
even without expanding the modal basis the overall
accuracy of the modal-based optimization is quite
good, even though the weight of the changeable el-

ements is reduced by a total of 30%. The effects

of adding one and two static modes to the modal
data base are shown in figures 5 and 6. The effect
of adding one static mode is similar to that of the
2nd order approximation in Figure 4, except that
the small difference between the discrete and hy-
brid curves in Figure 4 (which is not affected by
high-order approximations) has disappeared. With
two static modes added (Figure §), all methods give
practically the same results.

by the International Council of the Aeronautical Sciences (ICAS)

Load Condition

Design Constraint

Mach 0.95, 10,000 ft,
9g pull-up

Mach 1.20, Sea Level,
-3g push-over

Mach 0.95, 10,000 ft,
max steady roll

Mach 1.20, Sea Level,

fiber strain:

3000 ¢ tension,
2800u€ compression
fiber strain:

3000 ¢ tension,
2800u€ compression

aileron effectiveness
> 0.2373

roll rate constraint

max steady roll

Table 1: Design loads and constraints
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Figure 6: One-case optimization weight history

with two static modes

The accuracy of the various modal options is in-
vestigated with the design variables that were ob-
tained after the 1st-order MD optimization case
with one static mode. The total weight of the
designed elements is at this stage (275.1 1b) is 25
% lower than that of the baseline structure (366.7
Ib). The various modal options were used to calcu-
late the trim parameters and the principal strains
along the wing span using the data base of the base-
line structure. The regular discrete-coordinate ap-
proach was also applied to the model to comparison.

The trim parameters for the discrete, modal, and
modal with static mode (MSM) methods are given
in Table 4.1. MSM results are no given for the
baseline case because the static mode is added only
after the 1st design step. The modal trim results are
very close to the discrete ones even without adding
the static mode, and the effect of the added mode on
the trim variables is negligible. This shows that the
effects of expanding the modal basis shown below
are due to the effects on local strains.
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Figure T:Errors of the principal strains along the
wing span

The wing box was next optimized for minimum
weight under the simultaneous strain, aileron effec-
tiveness and roll-rate constraints specified in Table
1. Optimization histories for the reference discrete
optimization case, and for various modal-based op-
tions without adding static modes, are compared in
Figure 8. The total weight errors with the 1st-order
approximation where 2-4% while those of the hy-
brid and 2nd-order methods were 0-1%. The same
optimization cases, but with a single static mode
added to the modal basis are shown in Figure 9.
Now all the fully modal cases are within 1% of the
discrete case, and the hybrid case converges to the
discrete one exactly in spite of the slight error after
the first design step.

Structure | Trim Method
param. | Discrete | Modal | MSM
Baseline | a [deg] 8.191 | 8.214 -
4§ [deg] -4.222 | -4.253 -
Modified | o [deg] 8.129 | 8.155 | 8.152
d [deg] -4.301 | -4.321 | -4.327

Table 4.1: Trim parameters at 2-nd design step
in 1-case optimization

The errors of the principal stains (compared to ,

the discrete-coordinate case)

in terms of percentage of the maximum allowable
strain in tension, along the skin elements marked in
Figure 3, are shown in figure 7 for various modal op-
tions. It can be observed that the effect of adding
the static mode is most significant in the SOF case
(all errors become smaller than 0.3%), and that
the hybrid stresses are almost perfect even without
adding the mode. -

420
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= 3601 \ ©  2-nd order
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o
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0 L
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Figure 8: Four-case optimization weight history

without static modes.
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Figure 9: Four-case optimization weight history
with one static mode.

The skin principal-strain RMS errors of the var-
ious modal techniques, calculated at the 2nd itera-
tion of Figure 9, relative to the discrete strains, are
shown in Figure 10 in percentage of the maximum
allowable strain in tension. The CPU time per de-
sign iteration in the various options, not including
the set-up time for constructing the data base, are
given in Table 2. The set-up CPU time for con-
structing the data base was 578 seconds. The CPU
time for running the discrete case was 311 seconds
in the preface stage and then 501 seconds per itera-
tion. The SOF modal case with one static mode is
probably the most cost effective option in our case.
It reduces the CPU time per iteration by 82% com-
pared to the discrete case, with RMS skin strain
errors of 0.2%. The set-up time for constructing
the modal data base is not very important because
the same data base can be used for numerous opti-
mization cases with various move limits, constraints
and control gearing ratios.

no static mode
one static mode

0.5+

RMS skin strain error, % of the maximum value

MD1 MD2 SOF1 SOF2 HYB

Figure 10: RMS skin principal strains errors.
i

Method Static mode
1o one
Hybrid
st design iter. 34.0 | 34.0
other iter. 107.0 | 153.0
SOF .

1st design iter. 38.5 | 38.5
other, 1st order 62.7 | 90.9
other, 2nd order | 176.6 | 204.8
MD
st design iter. 315 | 31.5
other, Ist order 56.9 | 86.0
other, 2nd order | 175.7 | 203.9

Table 2: CPU seconds for design iterations with
modal methods.

Conclusions

The modal-based structural optimization method
was extended to allow the expansion of the modal
data base with static modes calculated during the
design process. The expanded basis improves the
accuracy of the modal approach and yields asymp-
totic convergence to the exact discrete-coordinate
design. It also allows larger weight changes (more
than 30% reduction in the analyzed cases) with a
relatively small computational cost. The improve-
ments module as an on-line multi-disciplinary de-
sign tool. The composite-wing case studies were
with relatively large number of design variables.
They were indicative that the modal approach for
aeroelastic design has great potential for the early
preliminary design of aircraft where answers to
"what if” type questions are needed in short order.
The modal approach is accurate to produce quite
similar results to the discrete approach.
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Appendix A:
Discrete Coordinates and Matrices
Common finite-element codes such as NASTRAN
start the construction of the structural matrices at
the individual element level. The contribution of
each element is transformed to the global (g-set)

coordinate system. which contains 6 coordinates for
each grid point, and added to the g-set stiffness
and mass matrices, [Kgq] and [Mgg]. At this pref-
ace stage, the matrices are not affected by mod-
eling constraints, boundary conditions or solution
method. .

To avoid repetitive construction of the g-set ma-
trices from scratch, The ASTROS optimization
code separates the contributions of the structural
parts which are affected by the ng, global design
variables from those which are not affected. A
global design variable is a changeable factor that af-
fects the structural matrices of a user-defined group
of finite elements. In each design cycle, the matri-
ces are assembled by adding the contributions of
the changeable elements to the contribution of the
unchangeable elements. The stiffness and mass ma-
trices is assembled by

i i Ndy a I.r . ]
[Kggl = [Kyglu +Z ”i%‘*[h’gy]m (A-1)
i=1 t

and

Ndy 6[M ]L

[Mgg] = [Mgg}U'*‘z ”ia—zj'*'[Mgg]NL (A-2)

where v; is the current value of the ith design vari-
able, subscript U denotes the unchangeable portion
of the matrices, L denotes the assembly of element
matrices which are linearly depended on v;, and NL
denotes the assembly of those which are non-linear
functions of v;. The contributions of most finite el-
ements in typical aerospace models are linear with
respect to a representative gage. Hence, optimiza-
tion of aircraft structures can be usually formulated
with the non-linear terms omitted.

The g-set matrices are reduced to the free (f-
set) coordinates by application of single- and multi-
point constraints (SPC and MPC). This reduction
to [Ksf] and [M;f] is repeated in each discrete-
coordinate design iteration. ASTROS defines these
constraints as "boundary conditions” and allows si-
multaneous optimization runs with different sets of
boundary conditions.

NASTRAN and ASTROS allow a further reduc-
tion of the structural matrices by Guyan’s static

condensation. The f-set coordinates are divided _ .-

into analysis (a-set) and omitted (o-set) ones, and
the undamped equation of motion is partitioned ac-
cordingly,

R’aa Kao Uq + Maa Mg, tg
K:{o Koo Uy Mg:, M,, U
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It is assumed that the inertia loads can be ne-
glected in the bottom row, which yields

{uo} = [GoH{ua} + [KOO]-I{Po} (A—-4)
where .
(Go] = ‘[KOO]_I[KM]T (A-5)

It is also assumed that the o-set accelerations can
be approximated by

{ao} = [Go]{'&a} (A - 6)

The resulting a-set equation of motion is

[Kaa{ua} + [Maa){lia} = {Pa} (4-17)
where
[Kaa] = [I:G ] = [Kao)[Koo] " '[Ka ]T
[Maa] = [Maa] + [M3o)[Go] + [Go)T [Mao]”
+ K%F[ 00)[G]

{Pa} = {P}+[G]T{P)}

Equation (A-7) can be used for normal modes anal-
ysis (with {P,} = 0), for dynamic response (with
an’ additional damping term), or for static analy-
sis with inertial-relief effects (with {ii,} defined by
rigid-body accelerations).

A further reduction is required when the struc-
ture has n, rigid-body degrees of freedom. User-
selected n, a-set coordinates are used to represent
the rigid-body (r-set) motion, while the left-over
(I-set) coordinates define the relative elastic defor-
mations. While [K,,] is a singular matrix when
ny > 0, [Ky] is not and hence can be inverted.

The transformation matrices between the coordi-
nate sets are saved in the data base at the initial
analysis phase for subsequent recovery of the dis-
placements from the lowest l-set level to the high-
est g-set level, and for reduction of g-set loading
vectors to lower sets. The modal approach, which
does not update the discrete-coordinate stiffness
and mass matrices in each design step, uses a recov-
ery/reduction process to calculate stiffness or mass
dependent loading vectors. To calculate the inertia
loads { P} = [Maq]{iia}, for example, {ii,} is first
expanded to the g-set {i,}, multiplied by the com-
ponents of [M,] given above, summed according to
the current values of the design variables, and then
reduced to the a-set level.
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