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Abstract: An affordable unsteady aerodynamics method
suitable for three-dimensional aeroelastic simulations is
presented. The method solves the unsteady Euler/Thin-
Layer Navier-Stokes equations on a deforming mesh. The
spatial discretization is based on a cell-centered scheme
and employs an upwind method using Roe's flux differ-
ence splitting (FDS). The temporal integration is carried
out efficiently in an implicit manner in which a set of
nonlinear equations is solved at each time step using a
relaxation method. Further, the method is parallelized
using a domain decomposition technique. Discussions
concerning the requirements for aeroelastic simulation,
the solution method and some applications are presented.
The quality of the numerical results and the turn-around
time of the method demonstrate the applicability of the
current method for routine aeroelastic simulation pur-
poses.

Introduction

In a cooperation between Delft University of Technol-
ogy (TU Delft) and the National Aerospace Laboratory
(NLR) a Computational Aeroelastic Simulation (CAS)
method has been developed. The method employs the
Euler/Navier-Stokes equations for the unsteady aerody-
namic part and a linear modal decomposition method for
the structural part. The primary goal of this development
is to obtain a CAS method with the potential for future
industrial applications.

During the first stage of the research a two-dimensional
method for solving the unsteady Euler/Navier-Stokes
equations on a arbitrary moving mesh was developed.(2)
The method serves as a test-bed for investigating the pos-
sible algorithms and modelings. From the many meth-
ods which were studied it turned out that an adequate
method which allows large time steps to be taken, thereby
minimizing the overall turn-around time of the method,
should be based on:
¢ Roe’s FDS for the inviscid flux.
¢ An implicit method employing line-relaxation.

e Thin-Layer assumption for the viscous terms.
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The extension to three-dimensional configurations was
straightforward and the advantages of the two-
dimensional method were retained.(*9) Recently the de-
velopment has focussed on improving the coupling proce-
dure between the aerodynamic and the structural part in
order to take full advantage of the large time step capa-
bility of the aerodynamic part.(?9) The three-dimensional
method has also been adapted for running concurrently
in a workstation cluster as well as on multi processor
(SMP or MPP) machines. The speed-up due to paral-
lelization is very encouraging, adding to the possibility of
application on a routine basis.

The present paper presents the computational methods
employed in CAS (aerodynamic as well as structural) and
highlights lessons learned from the parallelization and its
validation. Finally the results obtained in applications for
isolated wings and for more complex configurations are
presented and compared with experimental results and
results obtained with other methods.

Governing Equations

The set of governing equations consist of the un-
steady aerodynamics part which employs the Navier-
Stokes equations and the structural part which utilizes
a modal decomposition.

Aerodynamics

For flows at high Reynolds number where the con-
vection phenomena are dominant, it is appropriate to
apply the thin-layer assumption. The governing equa-
tions are transformed from the Cartesian physical do-
main to a computational domain by £ = &(z,y, 2,t),7 =

n(z,y,2,t),¢ = {(z,y,2,t) and 7 = t to facilitate the

discretization in a uniform grid. The conservative form
of the Thin-Layer Navier-Stokes equations in a curvilin-
ear coordinate system, with ¢ represents the coordinate

within the shear layer, reads:
8Q OE oF oG oG,
=T 1
R T L TR T @)

where the conservative variable is @ = hQ, Q@ =
[0, pu, pv, pw, pE]T, the inviscid flux vector in ¢ direction
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is £ = [pU, pulU + &p, poU + &yp, pwU + E.p, pEU +
U'p]”, and the contravariant velocity is U = £, + ,u +
&u+E&w =& +U'. The other inviscid fluxes, F and G
are obtained by replacing (U, £) by (V,7) and (W, ), re-
spectively. The metric coefficients, &, &yr &2, €t 1z 8te,
are obtained from the transformation relation given eg.
in.{*®) Quantities with a hat () denote unscaled quan-
tities with respect to h = J!, the inverse Jacobian of
the transformation.

In the Thin-Layer approximation the flow variables can
be fully factorized from the metrics and the viscous term
G, can be written in the practical form:

0
~ u MU + Mi2¥¢ + Migwe
G, = = M12U¢ + Mo + Magwe | (2)
€ mMi3U¢ -+ mg\:;U( + m33we
Gy
where:
~ mll m22 m33
G, = > w?)e + 7(1’2)4 = w’)e +
maa{uv)¢ + maz(vw)e + mis(wu)¢-+
v
M

In Eq.(2) the Stokes hypothesis for bulk viscosity is used,
by which A + 214/3 = 0 and only derivatives in ¢ direc-
tion are retained. The metric functions m are presented
in the appendix. The density has been nondimension-
alized by poo, velocity components by a, pressure by
Pootl,, energy by a2, the coefficient of viscosity by oo
and the temperature by T,,. The molecular viscosity is
obtained from the Sutherland law. The eddy viscosity is
obtained from the Spalart-Allmaras(?) one-equation tur-
bulence model. The Baldwin-Lomax model was used in
the previous studies but turned out to be not suited for
parallel computing. The laminar and turbulent Prandtl
numbers are taken to be constant: Prp = .72 and
Pry =0.90.

Boundary conditions. On a solid surface the normal ve-
locity vanishes. Assuming that the ¢ direction leaves the
solid surface this condition is:

W=Gw-9)+Gv-9)+Gw-2=0. (3)

Further for viscous flows the tangential velocity compo-
nents vanish as well, which can be satisfied simply by
setting:

u=% v=9 w=3. 4)

Following the idea of Rizzi,(??) the pressure is extrapo-
lated from the computational domain to the solid surface
by using the normal momentum equation. For a moving

boundary it reads:
a —

(VCe v{)g—g +(VCe Vﬁ)g—z +(VCe Vf)a—g

Eq.(5) is valid for inviscid flow and has been obtained
after imposing the condition for the normal velocity, i.e.
Eq.(3). For viscous flow the condition of zero velocity
on the surface and neglecting the normal viscous stresses

compared to normal pressure reduces the right-hand side
(RHS) of Eq.(5) to simply:

phdC, /0.

The density is calculated using the adiabatic wall con-
dition, 0T /0n = 0 or for viscous flow using the stag-
nation temperature condition on the solid surface. At
the outer boundary, far from the airfoil, the flow is prac-
tically inviscid so that the boundary conditions for the
Euler equations can be applied.

Structural Dynamics

In general the equation of motion of the aeroelastic
system can be represented by:

ME+Cz + Kz = ¢ SCs (M, Reoo, z,z), (6)

where M, C and K are the mass, structural damping and
stiffness matrices, respectively. x is the vector of physi-
cal displacement. g, is the freestream dynamic pressure,
S is the reference area and Cjy is the aerodynamic force
coefficient. In aeroelasticity usually the high frequency
modes are hardly important and are cut-out from the
analysis. To take advantage of this, the motion of the
structure is represented by a finite number of modes ob-
tained from solving:

M& + Kz =0. )

By assuming the solution to be z(t) = ¢e**, a standard
eigenvalue problem is obtained which can be solved for
the mode shapes ¢; and their eigenfrequencies w;. The
resulting mode shapes are normalized with respect to the
mass matrix:

$TMP=1 ¢TK¢=w. (8)
Substituting = ¢q into Eq.(6), using Eq.(8) and as-

suming a diagonal damping (e.g. proportional damping),
results in an independent set of equations:

i + 20wi; + wlg; = ¢ SQs, i = 1..N, 9)
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where (; is the nondimensional generalized aerodynamic
force {GAF) defined as:

1
Q=5 [ pomas. (10)
S
N is the number of modes which are employed in the
computation. Most of the time IV is much smaller than
the number of degree of freedom employed in solving

Eq.(7).

Aeroelastic Requirements

The interaction between the fluid and the structure
occurs at the solid surface. The structural parameters
at the solid surface (displacement, velocity and acceler-
ation) determine the boundary conditions for the fluid
flow, while the stresses of the fluid on the solid surface
give the loading to the structure. In practice the working
parameters for the coupling may differ according to the
solution method. For example the loading on the struc-
ture can be expressed directly in the form of stresses(®) or
in the form of forces.(1%) In the present approach, where
modal decomposition of the structural part is applied, the
working parameter for the loading is the GAF, defined by
Eq.(10). GAF represents the work of the fluid performed
on the structure. To obtain accurate values of the gen-
eralized forces, an accurate prediction of the pressure is
essential at the locations with large displacements normal
to the surface. This implies also that the computational
mesh should be generated according to this criterion. It
should be noted that the accuracy requirement for the
GAF should also take into account the physical uncer-
tainties involved in structural modeling* and numerical
errors due to inadequate resolution.

The requirement for the temporal integration method
is dictated by the time scales involved in the simulation.
It is assumed, without losing generality, that the number
of time steps per cycle is fixed and the time scales can
then be expressed in frequency scales. The frequency
parameters and the nondimensional time in an aeroelastic
simulation are given in the following table:

aerodynamic | structure
| kr = wrcfUss Wy
™ ¢/ 1/wp

where c is a reference length, Uy, is freestream velocity
and w; is the highest structural frequency of importance,
which is chosen on the basis of experience. From a phys-
ical point of view the temporal integration method has
to be able to capture the flow behavior only up to the
allowed highest frequency of interest, defined as the ref-
erence frequency k.. From the numerical point of view
the lowest frequency, defined as kstap: will be of interest.
This frequency represents the numerical stability limit of
a temporal integration method. If kg, > ki then the

*e.g. M might be estimated within g% accuracy, C is hardly to
estimate, K might be estimated within 10% accuracy and ¢ as a
consequence, has an accuracy of about 20%.

method is said to be limited by numerical stability. Since
large time steps may lead to a better efficiency it is de-
sired that the choice of the time step should only be dic-
tated by the adequate sampling of the physics. Therefore
the quantity of interest to determine the requirement to
the temporal integration method is the minimum accept-
able value of k...

When the flow behaves dynamically linear (e.g. small-
amplitude of oscillation or relatively high frequency) the
frequency scale of the flow is k.. However, in transonic
cases involving large amplitude motions where the shock
waves travel over a significant traject and/or when flow
separation occurs during at least a part of the oscillation
and/or due to pilot induced effects, nonlinearities will
generate higher harmonics in the response. This suggests
the need of a higher frequency scale to prevent aliasing
errors. Considering the entire aeroelastic simulation the
higher frequency components of the aerodynamic forces
would be important only if they coincide with structural
frequencies associated with lightly or mildly damped vi-
bration modes and have sufficient support in space and
time, otherwise these components will decay anyway.
Since this situation hardly appears in practice it may thus
be concluded that the most stringent requirement for the
time integration method of the aerodynamic part is k.

Experience shows that an accurate integration of the
structural equations needs time steps of (O(10) per cy-
cle.(t2) If a time step of this order is applied to a typi-
cal transonic aeroelastic case characterized by relatively
low frequencies, medium sized mesh and a high subsonic
Mach number, the CFL number in the unsteady aerody-
namic calculation can easily exceed 0(104). A method
which is not sensitive to a CFL restriction is applied.(19

Solution Method

Following the method of lines the spatial discretiza-
tion and temporal integration are decoupled and treated
separately. -

Upwind Cell-Centered Finite-Volume Method

Eq.(1) is spatially discretized using a cell-centered
finite-volume method applied to the transformed equa-
tions. At time level (n + 1) the semi-discretized equa-
tions in a uniform computational mesh read (A = Ap =
A(=1):

any

oQ Oh ~ ~
Zoh" + —Qr+ BN - B
or + aq—Q + i+ 3.5k i— 3.4,k +
-~ ~ An+1 An+1l i
n+1 . n+l O _
Fi,j+§,k Fi,j—%,k + Gi,j,k+% Gw,k—% =0,

where G = G — @v and @ represents a cell-averaged
value of the conservative variable.

The viscous flux is discretized as usual using central
differences which adequately captures its elliptic nature.
The inviscid flux is discretized using Flux Difference Split-
ting (FDS) employing Roe's approximate Riemann solver.
From many possibilities this method was chosen because
it:
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e correctly capture shear layers: appropriate for Navier-
Stokes equations, less sensitive to mesh stretching in
the normal shear layer direction.

e easy applies to moving grid problems: the grid speed
affects only the eigenvalues.

e is robust: applicable for implicit method, easy to con-
struct an approximate Jacobian which ensures positiv-
ity.

The usually mentioned drawback of Roe's FDS is its

expensiveness compared to Flux Vector Splitting (FVS)

(e.g. van Leer FVS or AUSM). However, this advantage

of FVS methods diminishes when the Jacobian of the flux

has to be calculated (to facilitate implicit methods). The

inviscid flux calculated using the Roe's FDS is, e.g. in a

cell face (i & 3,7, k) in £ direction:

/\

SIB@Q) + B@)] - 1AQ)IQ"
where the fluxes are evaluated using the metrics data at
the cell face, Q% and Q™ are the states on the two sides
of the cell face, and Q@ = Q(Q*, Q™) is the state at the
cell face calculated using Roe averaging of Q* and Q~,
see.®) A = 9E/8Q is the Jacobian of the flux with
respect to the conservative variable. The states on the
two sides of the face are obtained using the MUSCL vari-
able extrapolation method due to van Leer (the limited
» K-scheme):

-Q7), (12)

Qi = Qi F $[(L - k9)dQE + (1 + rs)dQF], (13)
with dQ+ Qi+1 — Qs dQ; =Qi— Qi1 and k = —

for second-order fully upwind and & = 1 for third- order
(in one direction) upwind bias. s is the limiter function
needed to keep the scheme monotonic. |A] is calculated
as |A| = R|A|L where R and L are the matrix of right
and left eigenvectors of the flux Jacobian A, respectively.
Ais a diagonal matrix with the eigenvalues X as the
entries. R and L are normalized such that RL = I. The
flux difference in Eq.(12), i.e. the second term, can also
be calculated more efficiently using:

RIA|L6Q = RIR|ISU = ©3_, Mo R, (14)

where [ is the left eigenvector of the inviscid flux of
the Euler equations in_the primitive variables U =
[0, u,v,w,p]T. a; and R; are the characteristic variable

and the eigenvector (i-th column of R), respectively, as-

sociated with the i-th eigenvalue ;.

Implicit Temporal Integration with Relaxation

To meet the requirement of having a large time step
capability an implicit method is applied for the temporal
integration of Eq.(11). The starting point is a method
which is capable of solving the steady Euler/Navier-
Stokes (A7 = o0). Such methods, which employ re-
laxation techniques, have been applied to solve the Euler
equations("/(?6) and the Navier-Stokes equations(®).(16)
The inclusion of the time derivative in these methods

may in general change their stability behavior. If a strictly
A-stable scheme is desired, at most a second-order accu-
rate discretization may be applied for Q/87. Experience
shows that the second-order scheme gives satisfactory re-
sults in most cases , thus it is adopted as the default
scheme of the present method. However, third-order ac-
curate backward differencing for 8Q /87, which is defined
as stiffly stable by Gear,(*1) is also applied. -

The residual at a time level is defined by Eq.(11). The
time derivative 0Q/0T is approximated using backward
differences:

9Q
or =
and Oh/Ot is calculated from the contravariant grid

speed using the geometric conservation law (GCL) re-
lation:(19)

1T (c0AQ™ + c1t AQ™ ! + c;AQ™2),  (15)

dh _ 3& O 0L

or 9 o o
AQ™ is defined as (Q™ — Q™). The coefficients of

backward differences for a variety of orders of accuracy
are:

(16)

{ Accuracy | a | e |
Ist 1 0 0
ond | 372 |-1/2] 0
3rd | 11/6 | -7/6 | 2/6

Inserting Eq.(15) and Eq.(16) into Eq.(11) results in a
set of nonlinear algebraic equations which is solved using
Newton’s method:

IR(Q")
oQ

where p is the sub-iteration level, QP is the approxima-

tion to Q7! and AQP is QP — QP. It should be

noted that the accuracy of the sub-iteration scheme is
determined only by the right-hand side (RHS), while the
left-hand side (LHS) determines the rate of convergence.

Quadratic convergence of Newton's method is obtained

if the LHS is the exact Jacobian of the RHS and the re-

sulting system of equations is inverted exactly to obtain
the correction. In the present method an approximate

LHS is employed for the relaxation:

o A first-order accurate Jacobian is always applied, re-
gardless the order of the accuracy of the residual. This
results in a block-tridiagonal matrix along a coordinate
direction and a diagonally dominant Jacobian, thus fa:
cilitates the relaxation approach.

¢ An approximate inviscid flux Jacobian with respect to
the conservative variable is also applied:

1 1 =
£ = SAQH) £ 514Q)] (18)

This form neglects the dependency of A(Q) on Q*.
Even simpler forms might also be used(?%(29) pyt
turned out to be much less robust or otherwise less
efficient than Eq.(18).

AQP = —R(Q",Q™,Q"1,Q"%),  (17)
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It was expected that due to these approximations the
convergence would be slower but numerical experiments
hardly revealed performance degradation and the method
turned out to be very robust.

Relaxation A variety of relaxation methods to solve
Eq.(17) have been studied. In the two-dimensional ver-
sion a line relaxation is applied with an update of Q in
each sweep. The sweeping is in ¢-direction while the
equations along ( lines are solved directly. The direct in-
version should resolve stiffness due to the mesh stretching
and implicitly handles the viscous terms which have an
elliptic behavior. In the three-dimensional version the line
relaxation is retained which leaves some possibilities for
the sweep direction from which the parallelization might
benefit:

¢ Forward-backward sweep in the planes of constant ¢
or 7 while in each plane the two-dimensional method
is applied. The variant of this scheme is using a zebra
relaxation in each plane to take the advantage of run-
ning in a vector computer. For this scheme the update
of Q is carried out after each sweep.

e Forward-backward sweep along the planes of constant
(€ +m). This scheme is called here Line LU-SGS since
equations along the ¢ lines are inverted. The original
LU-SGS scheme(®®) sweeps along the planes of con-
stant (€ + 1 + ¢) and only a block diagonal matrix is
inverted.

Another method is using a point-relaxation with red-

black (RB) ordering. Red and black are used to call

computational cells with (£ + 7 + ¢) odd and even, re-
spectively.

The sub-iteration is stopped once [R™+1?| drops be-
low a prescribed value. This criterion is applied instead
of |[R™*1:7|/|R™*1.0|(15) ypon observing that sometimes
in the beginning of a sub-iteration the value of the un-
steady residual was already very small, so that setting the
convergence criterion relative to this level would lead to
an unnecessary strict condition.

Mesh deformation To follow the motion of the solid sur-
face the mesh has to deform accordingly. The outer
boundary is held fixed and the solid boundary is attached
to the structure using the volume spline method.(24)
To deform the mesh smoothly the spring analogy tech-
nique(® has been adopted, in which the mesh points are
connected by springs with stiffness coefficients inversely
proportional to the third power of the length of the mesh
segments. The original solution method was modified to
safely accept large deformation in each time step.(19)

Turbulence model The equation for the Spalart-Allmaras
turbulence model is solved in a decoupled manner from
the governing flow equations, using a similar discretiza-
tion method. From the two-dimensional study compar-
ing simultaneous and separate solution methods for the
turbulence model no significant difference was observed.
The advantage of a separate method is the possibility to
apply different relaxation strategies. [t is known that the

one-equation model of Spalart-Allmaras is stiffer than the
flow equations. The solution method should be adapted
for this behavior without sacrificing the efficiency of the
solution method of the flow equations.

Coupling Procedures

The difficultly in solving Eq.(6) is the dependency of
C4 which is a nonlinear function of . A variety of-
methods were developed to solve this problem. Bendik-
sen®) solved the aeroelastic equations in a fully cou-
pled way using an explicit Runge-Kutta method. This is
probably the ideal way according to the physical model-
ing. The main drawback is the small time step which
has to be taken due to stability limits of the explicit
method. This also has repercussions for the mesh to
be regenerated/deformed and subsequently the calcula-
tion of metrics. The turn-around time of this method
might be prohibitive for practical problems. An im-
plicit method, which allows larger time steps needs an
iterative scheme to solve Eq.(6) and Eq.(1) simulta-
neously. The scheme may be of explicit type (using
dual time stepping, e.g.()) or implicit type (e.g.?) al-
though an explicit fluid-structure coupling is applied dur-
ing the iteration). These methods certainly need mesh
updates during the iterations in each time step. This re-
duces the advantage of these methods. The so-called
loosely-coupled/staggered/partitioned method(®(10) s
more widely accepted for solving Eq.(9) due to the clear
separation of the solution of aerodynamic and structural
equations. The method proceeds by extrapolation of ei-
ther the fluid or structural state to be used as an input
for the other field. This method has the advantage that
it is suited for most of the methods developed for the
flow and structural parts, and in each time step a lim-
ited number of meshes have to be regenerated /deformed.
A consideration in introducing mesh updates during the
sub-iteration is whether having n updates in the sub-
iteration with time step At is more efficient than one
update with time step A7/n. Various strategies were
tested for two-dimensional as well as three-dimensional
transonic flow cases(®®) which concludes that one mesh
update in each time step performs quite well, even for
large time steps. The methods presented in(29 are em-
ployed in the present work.

The second-order differential equation, Eq.(8) can be
brought into a standard state-space representation as a
system of first-order differential equations:

X = AX + BQ, (19)

where:

0 1 : 0
=l ] o[ ]
and the state variable is defined as X = [q, ¢]T. It should
be noted that in general , the ¢ should be considered

as a vector of modes g¢'s and an entry of a matrix in
Eq.(20) as the entry of a diagonal sub-matrix. When -

(20)
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the aerodynamic forces do not depend on z, a standard
method can be use to solve Eq.(19):

t(n+1)
Xt = ex04 / ®(t — 7)BU ()dr
4]

~ B(AHX™ + 0(ANT, (21)
where U is a representative value of U(t) between time
level (n) and (n + 1). Calculation of & and © can be
found in e.g.(.*% |n the present method T is approx-

imated by Um+z. Three approaches are employed to
define Un+3:

Aerodynamic extrapolation The aerodynamic force is ex-
pressed as: U = U(Q, X) and the extrapolation to time
level (n + 1) is:

1 oU 0Q  9U 8X At

n+35 A, n il ol TN
VTRVt G m tax e @
0Q/0t and 8X/8t are readily available data while

0U/6Q and 8U/8X have to be calculated.

Structural extrapolation To obtain the aerodynamic force

at time level (n + 3), the state of the mesh is first ap-
proximated as:

"3 x4 2 A2

&7 " ETAL/2 (23)

z™ is readily available while £™ is approximated simply
as (€™ —£™~1)/At. Using this data a mesh is generated
and the surface velocity is used to enforce the boundary
condition. Thus the aerodynamic part of the method
marches at a time level between the structural states. It
should be noted that a similar method was introduced by
Farhat(19) for a different purpose.

Prognostic method This method is essentially the refine-
ment/generalization of the two aforementioned methods.
In each time step the structural or aerodynamic part is
extrapolated to the next time level by:

X™3 nP(X,U.t" %) or
U™ 3 aP(U, X, t73).

Here P(#,t) denotes the approximation of the time trace
{#n,Hn_1emne #n-m} at t which should be obtained
by performing one of the analysis methods as presented
in.(13) m denotes the number of retarded time steps in
the time domain. In this method an analysis of the time
trace, to determine the damping and frequency contents,
which is usually done in the postprocessing stage after
the simulation, is carried out during the simulation. It is
obvious that as soon as the function P is not changing
anymore the simulation can be stapped since the follow-
ing time steps will not present any additional information.
This is also an ideal stopping criterion for the simulation.

Parallelization Strategy

The solution method:i.e. the flow equations, the tur-
bulence model and the spring equation used to deform
the mesh, are parallelized using a domain decomposition
approach. The equation for the structure is not paral-
lelized because the degree of freedom is too small for
making the overhead cost of paralielization worthwhile. _
The adoption of domain decomposition strategy, instead
of data parallelization, was dictated by the portability re-
quirement. Data parallelization usually leads to a fine
grain parallelization which is not suitable for networked
computers. Moreover it needs a special compiler (HPF).
The current implementation has been ported to a variety
of computers, from PC up to MPP and PVP supercom-
puters.

To execute the relaxation in each sub-domain in par-
allel the dependency among the sub-domains has to
be frozen. This means that some boundary values are
treated explicitly. Consequently, in contrast with an ex-
plicit method, the convergence will decrease as the num-
ber of sub-domains increases.

Domain decomposition The computational domain is di-
vided into sub-domains where each sub-domain is as-
signed to a processor/node. The sub-domains are created
by dividing the mesh only in £ and 7 directions, i.e. not
in body surface normal direction. From numerical exper-
imentation it turned out as was expected that dividing
the mesh in ( direction results in a significant penalty in
convergence. This probably can be explained from the
usually highly stretching of the mesh in ¢ direction while
also the viscous term behave in an elliptic manner. Thus
the ( lines are kept as a whole.

The decomposition is carried out statically prior to ex-
ecuting the code. The difference in boundary condition
for each sub-domain usually does not contribute signifi-
cantly to the computing time. Thus e.g: for an uniform
set of processors the mesh is divided equally among the
nodes. For a nonuniform set of processors the mesh is
divided according to the processor speed.

Explicit sub-domain coupling At the boundary of each
sub-domain the halo cells will have two possible condi-
tions: a physical boundary condition, i.e. solid surface,
freestream, etc. or an artificial boundary condition, i.e.
the flow variable of its neighboring domain. For main-
taining second-order spatial accuracy two layers of halo

cells are needed for the artificial boundary, see Figure 1. -

The flow state at the halo cells of the artificial bound-
ary are transfered from the neighboring sub-domain using
communication routines. In this manner the sub-domain
coupling is conservative.

For the flow equations the possible coupling variable
between the sub-domains are Q and AQ. In the first
case the interchange occurs after the Q has been up-
dated (using Newton's method), so that the linear step
works completely locally in a sub-domain. In the lat-
ter case the interchange already occurs during the linear
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Figure 1: Artificial boundary condition between two sub-
domains using halo cells

step. Concerning the convergence, the transfer of AQ
would certainly have a positive effect. Even for the RB
point-relaxation there is no penalty at all if in each linear
step a transfer of AQ is carried out. But certainly this
costs some communication time. As will be shown the
convergence penalty for a moderate number of processors
(up to 32) is not really significant. Thus in most cases,
except when it is mentioned otherwise, the results in this
paper employ the transfer of ). The solution method
for the one-equation turbulence model works exactly the
same as for the flow equation.

For the spring equation the mesh position is transfered
to the neighbors. A slight difference exists compared to
the "decomposition of flow and turbulence model. The
unknown for the spring equation is at the vertex, which
means that there is an overlap region which is shared
by two sub-domains. This overlap region is updated fol-
lowing the update in the field and the transfer to the
neighbor. In this manner the neighboring sub-domains
will will share a unique value of the mesh position in the
overlap region.

Implementations The implementation of the sub-domain
coupling method can be carried out conveniently using a
communication library (e.g. PVM, MPI, BSP, SHMEM,
etc.). There are two possibilities in communicating the
interface values between two sub-domains: using mes-
sage passing (a pair of send-receive routines) or using
direct remote memory access (DRMA). The first method
already has some sort of synchronization mechanism,
while the latter needs a manual synchronization. In the
present method the PVM communication library is em-
ployed since it is available on most of today computers. In
the implementation on the CRAY computer (MPP T3E
and PVP J910) the most critical part of the communica-

tion routine, i.e. the interchange of the boundary data;

is applied using the CRAY native communication library
SHMEM which uses the DRMA method.

While waiting for completing the transfer of the data
between the processors, some other task can be carried
out. For example since the transfer is in 5 and ¢ direction
the flux in ¢ direction can readily be calculated without
waiting for the neighbors. This technique reduces the
portion of communication time from the whole compu-
tation.

Results

This section presents results of the validation and test-
ing of the parallelization technique and also some results
of recent aeroelastic applications.

Parallelization Performance

The purpose of the test cases in this section is to val-~
idate the decomposition method and to investigate the
scalability of the method. Only a fixed mesh case is pre-
sented with a reasonable amount of mesh points.

For this purpose the standard AGARD CT5 test case
is used. This case is a transonic flow about the LANN
wing(® at M,,=0.82, a=0.60 deg oscillating about y-
axis located at 2=0.621 with reduced frequency k=0.102
based on root semichord and the amplitude of oscillation
is 0.25 deg. For the calculation the DLR mesh(") is
employed. The topology of the mesh is CH with a size
mesh points.

The calculations were carried out on the SUN MP
1000 machine (8 processors) at the Section Structures
and Computational Mechanics and on the CRAY T3E of
the TU Delft Center for High Performance Applied Com-
puting (HPaC) with 72 processing elements (PE). The
SUN MP is a shared memory system with 1 GB of RAM
(4 byte words) while the CRAY T3E is a distributed mem-
ory system with 128 MB of RAM (8 byte words) in each
PE.

The calculations were carried out with all variables in
core. On the CRAY T3E at least 8 PEs have to be em-
ployed for memory and load balancing reasons. Thus
the comparison for 1-8 processors is done on SUN MP
and 8-64 processors on CRAY T3E. The speed-up on
the CRAY T3E is calculated relative to the 8-processor
performance.

Steady Flow The result of the steady flow calculations
are depicted in Figures 2—4. Figure 2 shows the com-
parison between the result using 8 processors, the one
using 64 processors and the experiment. A more com-
prehensive comparison of the present method with exper-
imental data can be found in.(*9) It can be concluded,
from Figure 2, that the parallelization does not change
the quality of the solution. Figure 3 presents the conver-
gence history of the simulations using a variety of num-
ber of processors. The convergence penalty caused by

the explicit treatment of the artificial boundary increases --

with the number of processors. It can be seen from the
L2 norm for the mass conservation equations that this
penalty is not severe even for a large number of proces-
sors. On the other hand, the history of the lift coefficient
is hardly influenced by the parallelization. The speedup
of running on more processors can be seen from Figure 4.
This speedup was calculated from the convergence crite-
ria of the L2 norm of the residual of mass conservation
equation. The run using 64 processors took less than 4
minutes.
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Unsteady Forced Vibration This section presents the ap-
plications for forced vibration cases. The calculations are
carried out using 24 time steps per cycle with a vary-
ing number of sub-iterations between 12 to 20. Figure 5
and 6 again show the comparison between results using
8 processors, 64 processors and experiment. It can also
be concluded that the parallelization does not alter the
unsteady solutions. For the 32 and 64 processors runs, on
average one additional sub-iteration is required in each
time step to achieve the same convergence level as the 8
and 16 processors runs. The speedup is shown in Figure
7. The 64 processors run took about 3 minutes per cycle
of oscillation.

Aeroelastic Simulation

The standard AGARD aeroelastic configuration(?® s
considered. The weakened model number 3 is selected
and its first 4 mode shapes are used. The configuration
is simple, an isolated wing, but it requires most of the
components building an aeroelastic simulation system:
structural model, coupling model and mesh deformer.
The mass ratio which is only valid at the experimental
flutter point for each freestream Mach number is used
throughout the simulation using Euler mode.

The simulation proceeds by first calculating the flow
condition at the mean steady position. Subsequently
. aeroelastic responses are calculated by prescribing ini-
tial velocity conditions to all four modes. Simulations
using a CH mesh of a2 80000 points have been done at
various freestream Mach numbers. For each Mach num-
ber at least 3 runs were carried out for different speed
indices. Each run took about 20 minutes using 8 proces-
sors of the CRAY T3E. An example of the time traces is
shown in Figure 8 for M,,=0.901. The flutter boundary
is shown in Figure 9. The results are in a fair agreement
with the experiment and with the full potential results of
AESIM.(?) The latter method overestimates the flutter
speed index at the lower Mach number.

Semi-span straked delta wing

Finally the efficiency and robustness of the EE mode of
the present method is demonstrated by comparing calcu-
lated data with experimental data of the NLR wind tunnel
test described in(® for the semi-span straked delta wing.

The flow condition is M, =0.90, amean="6.2 deg.
Time-accurate calculations have been performed on a
mesh of 97x125x30 points for pitching motion about
the 73% root chord with amplitude of 2.1 deg and at &
reduced frequency of 0.268. f. A time step size of 96
steps per cycle were sufficient to simulate the flow. Fig-
ure 10 shows the planform and steady isobar contours at
the upper side of the wing with total pressure contours
behind the wing. Clearly visible are the vortices initiated
by the simple strake and the tip of the outer wing panel.
A comparison of calculated and experimental mean and
first harmonic distributions of the’pressure coefficient at

Tbased on root chord

selected span stations is presented in the Figures 11-13
at the same flow conditions.

It is observed that the calculation predicts the shock
position more downstream over the entire wing and that
the pressure level is consistently over predicted. It's re-
markable that the calculated and measured shock posi-
tions are almost fixed during the oscillation. Except for
the most outboard station a fairly good agreement is-
shown for the first harmonic data. The most pronounc-
ing (although small) differences are the small peaks at
the shock positions.

Conclusions

A method for aeroelastic simulation employing the
Euler/Thin-Layer Navier-Stokes equations for three-
dimensional aeroelastic applications have been described.

The method has been successfully parallelized and a
satisfactory scalability up to a moderate (64) number of
processors has been obtained.

The turn-around time of the method for routine aeroe-
lastic simulation purposes has been strongly reduced.

The method has been applied to relatively simple
steady and unsteady transonic flows about thick and thin
wings and the complex transonic flow about an oscillating
straked delta wing.

Results of the method compare fairly well with exper-
imental data and data of other computational methods.
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Appendix

The metric functions of Eq.(2) are:

4 h

my = h(g(ﬁ +C+G) , m= ngCy
4 h

ma = h(G + ng +() , mas= gCyCz
4 h

maz = W+ + gCg) , Mg = ngCz

maq = h((2 + (2 + (2)
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Figure 2: Mean part of pressure coefficient distributions
on LANN wing, case CT5
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Figure 3: Convergence of lift coefficient and residual in
mass equations

Figures

Figure 10: Steady pressure contours (EE) on a semi-
span straked delta wing configuration with total pressure
contours behind the wing at My, = 0.90, oy, = 6.2 deg.

NSAE System |—e— speedup on SUN MP1000
3D:CH-mesh  {—— speedup on CRAY T3E
linear

80.0—
speedup

64.0+

48.0—+

32.04~

16.0+~

0.0

| grocessors |
T | 1
48 64 80

Figure 4: Performance of parallelization for steady flow
calculation for LANN wing, case CT5
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Figure 5: Real part of first harmonic pressure coefficient
distributions on LANN wing, case CT5
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Figure 6: Imaginary part of first harmonic pressure coef-
ficient distributions on LANN wing, case CT5
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Figure 7: Performance of parallelization for unsteady
flow calculation for LANN wing, case CT5
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Figure 8: Comparison of time responses between several
speed-indices for AGARD l-wing 445.6 at M., =0.901
@m = 0.0 deg, during aeroelastic simulation
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Figure 9: Flutter boundaries of AGARD l-wing 445.6
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Figure 11: Comparison of mean steady pressure coeffi-
cient distributions on a semi-span straked delta wing
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Figure 12: Comparison of real part of first harmonic
pressure coefficient distributions on a semi-span straked
delta wing .
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Figure 13: Comparison of imaginary part of first har-
monic pressure coefficient distributions on a semi-span
straked delta wing
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