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ABSTRACT

A conceptually novel and computationally efficient technique for computing aeroelastic
instability boundary of lifting surfaces in transonic flow is presented. The advance
capabilities in structural modeling of NASTRAN are integrated with a newly developed
unsteady transonic aerodynamic computer code called NTRANS (Nusantara
TRANSonic code). This integration is carried out through the replacement of each
natural mode shapes required for aeroelastic calculation in NTRANS with mode shapes
calculated from NASTRAN. An interface module is developed, based on the DMAP
module of NASTRAN,; in order to make this infegration efficient for routine calculations.
NTRANS code is developed based upon the nonlinear transonic small disturbance flow
equations and employed an Approximate Factorization finite difference solution
technique. Features that distinguished this solution procedure from the other solution
techniques are the. use of: a). Cyclic acceleration scheme which could increase the
convergence rate of the solution without degrading the accuracy, and b). Unit impulse
transfer function method in conjunction with Pade approximation function for the
calculation of the elements of GAF matrix as function of oscillation reduced frequency.
in this method, elements of the GAF matrix for each combination of free stream Mach
number and structural mode shape for a wide range values of the oscillation reduced
frequency are obtained by a single flow solution. It has been shown that this method
was much faster compared to the conventional method. Numerical results show that
this procedure is accurate and efficient for routine analysis and design use.

INTRODUCTION correct understanding of flutter behavior of an
aircraft structure is important for safety reasons
Aerodynamics and structures as well as for overall performance of the aircraft.

interaction plays a critical rule in airframe
design. It becomes even more significant when
viewed in the context of emerging
rmultidisciplinary design concept, because the
accuracy of both the aerodynamic and structural
models improves the reliability of the optimal
solutions. This static and dynamic aeroelastic
problem is govern by the mutual interaction of
elastic and inertial forces of the structure with
the unsteady aerodynamic loading induced by
the oscillation of the part of the aircraft structure
itself .

Conventional design practice required that this
flutter boundary of an aircraft structure be
outside the flight envelope by a margin of at
least 15 % in equivalent airspeed. Therefore, a

At present time, there is a continuous
effort to improve the performance™ of subsonic
transport aircraft. One attempt is to improve the
fuel efficiency by extending the flight regime to
high sub-transonic Mach numbers to increase
lift-to-drag ratios and flight speed. But, an
increase in Mach number into transonic regime
will bring other important problems of high
induced drag and nonlinear aeroelastic
response phenomenon, termed as fransonic
dip, where the aircraft experience an

- undesirable reduction in the flutter speed (as

much as 50% of its value at subsonic speed).
To accurately predict the nonlinear flutter
characteristic at transonic speed, it is necessary
to model the flows with an appropriate flow
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equation or system of equations. Navier -
Stokes equations are capable of presenting
mathematically the physical phenomena
encountered in most of fluid dynamic problems
such as transonic flows, including shock waves
and boundary layers. This flow equations
consists of system of nonlinear, second order
partial differential equation in space and time.
its numerical solution requires the
implementation of the tangency boundary
condition on the body surface, for which a time
dependent, body conforming grid system have
to be used. This requirement adds the overall
complexity and computational effot and
resources of the problem. Consequently a
simpler form of equation, but still can describe a
typical transonic flow structure, is often utilized.
At present time, transonic small disturbance
(TSD) equation is widely used in the prediction
of unsteady aerodynamic loads for aeroelastic
analysis, besides several older linearized
aerodynamic theory that had been developed
30 years ago, such as: Doublet - Lattice and
Vortex - Lattice theory, quasi steady Mach Box
theory and unsteady Piston theory. Most of
these linearized aerodynamic theory, however,
can not directly taking into account several
important parameters such as: liting surface
thickness and camber, angle of incidence and
oscillation amplitude and frequency2 Some
empirical corrections procedure to these theory
have been developed and used for routine
aircraft design purposes.

NASTRAN, a well known and widely
use computer code today for aeroelastic design
and analysis, was developed based upon
uncoupled aeroelastic solution procedure.
Structural equation of motions is solved using
the finite element discretization method. Mean
while, the unsteady aerodynamic loads working
on the structure are calculated using a
linearized aerodynamic theory such as Doublet
- Lattice theory and Mach Box theory. The
linearized aerodynamic theories being used
could accurately predict the unsteady
aerodynamic load only for flow in low subsonic
and high supersonic regimes. Outside these
flow regimes, where the flow nonlinearities
increases, significant error in the prediction of
the aerodynamic load may occurs. Similar
limitation is also applied for ELFINI 3 an
aeroelastic code developed by Dassault based

on empirical correction procedure and THINAIR
*, developed by Boeing Company, which apply
linear aerodynamic Panel theory.

The most advanced procedure for
nonlinear  transonic  aeroelastic  analysis
commonly used at present time are based on
the TSD theory, such as ATRAN3S and CAP-
TSD (both developed at NASA Langley and is
limited for US company use only). The
ATRAN3S code, NASA Ames version of
XTRANSS, is a three-dimensional code based
upon a time-accurate, finite difference methods
using alternating direction implicit (ADI)
algorithm. Several terms of the AD! algorithm
used in this code treated explicitly, which leads
to time steps restriction based upon numerical
stability consideration. Therefore, it is becomes
very expensive for  three-dimensional
applications not just because of the small time-
step needed to obtain convergence results, but
also because not all sweep in the algorithm can
be written in vectorized form >. Meanwhile, an
approximate factorization (AF) algorithm ® that is
applied in CAP-TSD was proven to be more
efficient for three-dimensional calculations. This
AF algorithm consists of a time-linearization
procedure coupled with a Newton iteration
technique. In this algorithm, the Newton
iteration process occupied most of the
computing time needed. Even though both
ATRANS3S and CAP-TSD computer code are
much faster compared to ENSAERO, their use
for design and analysis is still considered to be
expensive and is limited only for analysis during
the final design stage of an aircraft.

The main objective of this work is to
developed a prediction method for unsteady
transonic aerodynamic load called NTRANS
(Nusantara TRANSonic) based upon the
solution of TSD flow equations using modified
AF algorithm which has higher efficiency and
accuracy compared to the original scheme.
From previous study, it was found that Newton
iteration step employed in the original AF
algorithm is the major source of the slow
convergence. Also, the use of hamonic
oscillation technique in the calculation of
generalized aerodynamic forces (GAF) during

~ the aeroelastic analysis of the system required

calculations of aerodynamic response of each
combination of free stream Mach number,
oscillation frequency and structural mode
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shapes which is expensive and inefficient.
Features that distinguished this new solution
procedure from the other solution techniques
are the implementation of

1. Cyclic acceleration technique7 for
improvement in convergence rate. In this
technique an acceleration coefficient, o,
with cyclic values is added during the
sweeping process in the chordwise
direction. The addition of this coefficient will
gives stable and accurate results with less
iteration number per time step.

2. Unit pulse transfer function method® in
conjunction with Pade approximation
function for the calculation of the elements
of the aerodynamic load matrix as function
of oscillation frequency. In this method,
elements of the aerodynamic load for each
combination of free stream Mach number
and structural mode shape for a wide range
values of the oscillation frequency are
obtained indirectly, in a single flow solution,
from the aerodynamic response due to a
smoothly varying exponentially shaped

" pulse.

The structural natural mode shapes and natural
frequencies needed for calculations of the
aerodynamic load in this procedure are
obtained from NASTRAN structural dynamic
solution. Calculations of the aeroelastic
instability boundary and responses are carried
out either in NASTRAN (frequency-domain
solution) or in NTRANS (time-response
solution). NTRANS module is used to replace
the linear aerodynamic module available in
NASTRAN, so that the integrated NTRANS -
NASTRAN module can be applied for
aeroelastic analysis and design in transonic
speed. This integration is carried out through
the DMAP module of NASTRAN. Numerical
results for a wing and wing - body transonic
aircraft configuration shows that this algorithm is
accurate and efficient for routine design use.

GOVERNING EQUATIONS

NTRANS computer code is developed based
upon the linearized parabolic transonic flow
equations, which is the modified transonic small
disturbance equation. The transonic small

disturbance equation is obtained by combining
the continuity and Bernoulli equation for a
perfect gas with the isentropic flow relation and
written in conservation form as

gf.g. + %_ + gz_ + % =0 [1 ]

ot ax oy oz

where t is the nondimensional time = Kk t
with  k represent the oscillation reduced
frequency. The f, , f; , f, and f3 coefficients are

defined, in term of the disturbance velocity
potential , as follows :

fo = =Box + Ady , fy = Edy +Fof + GoJ
fa =¢y +Hox by . f3 =04

where A , B, F , G and H coefficients are
function of free stream Mach number, motion
reduced frequency and specific heat
coefficients. The pressure coefficient on the
liting surface, expressed in terms of
perturbation potential velocity, are calculated
from the relation

Cp = —20y — 24t - (1-M? ) 6 - 2
[2]

in which the cubical and higher powers of the
perturbation velocity are neglected.

Numerical computations are carried out in
computational domain, within a rectangular
region conform to the body, which is obtained
by a coordinate transformation of the physical
domain. The physical grid system in the (x, y, z)
- plane is transformed into some (§;m,() -

plane, so that the mesh spacing in"all directions
can be Kkept uniform in the computational
domain, using trigonometric transformation
function. The flow boundary conditions that are
imposed on the far-field (outer) boundary are
similar to the nonreflecting boundary conditions
introduced by Kwak ° and the flow tangency
conditions on the surface are applied on the
mean plane of the oscillating surface, which is
located along the axis parallel to the streamwise

- direction, z = 0, equidistantly between two

horizontal gridlines. For unsteady flow
calculations based upon the TSD equation, the
surface tangency boundary conditions need not
to be applied on the actual surface. Instead, it is
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applied on the mean plane of the body.
Therefore, a body-fitted grid system is not
required.

APPROXIMATE FACTORIZATION
ALGORITHM

A modified Approximate Factorization
(AF) algorithm is used for the solution of the
flow equation, Eq. [1] . This scheme consists of
a time linearization, to determine an estimate
value of the perturbation potential, coupled with
a Newton iteration technique to provide time
accuracy in the solution. In this algorithm, flow
equation is represented as triple product of
differential operator, which is

Le Ly Le (40) = R(¢"¢n,¢n—1’¢n—2)
[3]

where represent  differential

be oLy o Le
operators in the &, n, ¢ direction , respectively
, Ad is the error in the perturbation potential
velocity , R represent residual of the equation ,

¢ is the estimate value of the perturbation

potential velocity , and ¢",¢"", "2 is the
perturbation velocity potential at time level n, (
n-1) and (n-2), respectively. The definition of
Le . L, . Ly operators and R could be found in

ref. 10.

Equation [3] is solved through three -
sweeps in the computational domain by
sequentially applying the differential operators
Le ,Ln ’LC as follows

& — sweep Lg(AE)'):—R

n - sweep L, (A§) = A}

¢ - sweep Le (A) = Ad
[4]

Once these entire three sweeps completed, the
updated values of ¢ at each grid points are

computed by applying the last values of A¢
into the previous perturbation potential velocity:

O™ = 0T+ A0 = rew [5]

The computation is started with an estimate
value of ¢ and is carried out until a

convergence solution of ¢"+’ is obtainéd (until
the perturbation error A¢ reaches the values of

10°). In most of the computation that had been
performed °, a maximum of 3 Newton iteration
is needed for convergence solution at each time
step.

Using the new ¢™' values, the time
linearization step is carried through to obtained
the new estimate values of ¢~ for the iteration

of the next time step. In this step, the body
surfaces are put at their new position and
updated surface boundary conditions are
applied. The unsteady solution are initiated
using the steady solution as the first estimate
values. Since the solution at each sweep
depends entirely on the values that have been
computed at the previous sweep, all sweeps
can be coded in vectorized form.

CYCLIC ACCELERATION TECHNIQUE

Since all terms in this scheme are
treated implicitly, this scheme does not have a
time step restriction. In steady flow calculation
and during the Newton iteration step in
unsteady flow calculation, however, it is
possible to accelerate the convergence rate of
the procedure. This can be achieved by adding
an a cyclic acceleration coefficient, o, into the

right hand side of Eq. [4] during the& - sweep,
so that this equation become -
& — sweep Lé(AH;):—(xR

The value of o is given a variation according to

geometric sequence defined by
(k-1)
Qmin | (k,~1
Qg = Cmax {_ml_r_u_j|( ) [6]
%max

where k = 1,23, .., ko, with k, represent the
number of oy values to be defined, between 4

to 8. The oo @nd ain parameters represent
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the maximum and minimum values of selected
o, respectively, which are defined as

4
(ax)®

Umax = 1 and Omin =

where Ax is the grid spacing in the chordwise

- direction. It was found that the stability and
convergence rate of solutions is strongly
depends on the number of cyclic values of o

being used. For each different case, an
investigation has to be made for the definition of
an appropriate value of this parameter.

UNIT PULSE TRANSFER FUNCTION
METHOD

For aeroelastic stability solution, the
generalized aerodynamic forces (GAF) matrix
elements have to be compatible with the
associated aeroelastic stability equation given in
the Laplace variable, which is

| Ms? + []s + (ac2)[A] + K] J{no} = 0
(7]

where [A] represent the Laplace transform of
the generalized aerodynamic force matrix, [A1] ,
and defined by the following relation

Apj(xy.t) ds
Aty = -qc? [— 27 hi(x,y)c—2
S
[8]

The coefficient A1;; may consider as the
generalized force coefficients from the pressure
induced by mode - acting through the
displacement of mode -i. Apj(xy,t) is the

lifting pressure at discrete point ( x,y ) due to
wing displacement in the j-th mode, whereas h; (
X,y ) represent the Ith mode shape of the
structure.

Elements of the GAF matrix, [A1], are computed
at finite number of values of the oscillation
reduced frequency for each combination of free
stream Mach number and structural mode
shape. For three-dimensional problems,
calculation of these elements using the method

of harmonic oscillation is very expensive
because for each of this combination (free
stream Mach number, mode shape and reduced
frequency) a complete flow solution is required.
To make this calculation procedure more
efficient, a unit pulse transfer function method is
developed. In this method, the aerodynamic
loads for each combination of structural mode
shape and Mach number are obtained in a
single flow solution for a wide range value of
reduced frequencies.

In this method, the aerodynamic loads
are computed indirectly from the aerodynamic
response due to a smoothly varying
exponentially shaped pulse, as shown in Figure
1. .
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0
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3
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=
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0.000
-0.025 LI [ Bt S S S e B B B e e e s e s
0 30 60 90 120 150 180 210 240 276 300
Time step

Fig. 1. Unit Pulse input

The advantages of using pulse input (rather
than step function input) is to avoid the non-
physical transient that was found when using
step function input. The pulse is expressed as

r(t) = 1, e2(t-t) [9]

where 1, is the pulse amplitude, a and t, are
constants related to the width and center of the
pulse. In this work a and t, are selected equal to
0.25 and 17.5 At , respectively, where At is the
nondimensional time step. Deformation z at any
point (x,y ) given to the structure surface at any
time t is determined by the product of the pulse

. and the structural mode shapes, h (x,y), as

2(xy,t) = 1, €2 h(xy) [10]
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This deformation is applied to the structure and
the aerodynamic transients response, which is
expressed in term of the total lifting pressure at
point ( x,y ) on the surface Ap(xy), are

computed. The aerodynamic foads, in k-domain,
are defined as the ratio between the Fast
Fourier Transform (FFT) of the transient
response divided by the FFT of the deformation.
Once these quantities are computed, the GAF
matrix elements, Af1;; , are obtained by
substituting these values into Eq. [8]. In a three-
dimensional problems, for the purpose of the
compatibility between the structure and
aerodynamic terms in the derivation of the
aeroelastic equation of motion, h ( x,y ) are
selected as the structure natural mode shapes.
It is important to note that the transient
response has to be calculated for a time interval
that is long enough such that the final value of
the response become steady and equal to its
initial value. Otherwise, the Fourier transform of
the response will not be accurate.

NUMERICAL VALIDATION

The accuracy and efficiency of the
present calculation procedure employ in
NTRANS code is evaluated by selecting several
basic test cases recommended by AGARD and
comparing the numerical results with
experimental data and numerical results
obtained using other algorithm. Validations are
carried out in three-phase, which are: a).
Unsteady flow with harmonic motion, b). Unit
pulse motion, and c¢). Aeroelastic calculation.
Numerical calculations are performed on
rectanguiar wings configuration with aspect ratio
(AR} equal to 20 and have a NACA 0012 airfoil
without control surfaces.

Unsteady Flow Solutions

For unsteady calculations, wing
structure or its control surface is given a
sinusoidal harmonic pitching oscillation in the
form

a(t) = ag + oq sin(kt)

where o, , the initial angle of attack, is
selected equal to 0.02 degree and oy , the
pitching amplitude , equal to 2.51 degree.

Numerical calculations that will be shown here
are obtained for wing with NACA 0012 airfoil at
free stream Mach number M = 0.755 and
oscillation reduced frequency k = 0.05 , where
the flow field has a strong shock on the upper
surface of the wing. Each oscillation cycle is
divided into 360 time steps and the
aerodynamic responses are taken after 3
complete cycles.

Structure oscillation and the
aerodynamic time response (given in the form
of lift and moment coefficients, C, and C,) of the
first wing is given in Figure 2.

1.00

CL, CM, Alpha

-0.50 — T
0 180 360 540 720 900 1080 1260 1440
Time Step (kt)

Fig. 2. Time histories of o, CL and CM of NACA 0012
M = 0.755, k = 0.05, xc = 0.25¢, o, =002°,a, =251°

Unlike linear aerodynamic response in subsonic
flows, responses in these figure shows that they
generate a phase - lag with the structure
oscillation and between themselves. The
aerodynamic responses are late by a phase ¢

from the oscillation due to the discontinuity that
occurs across the shock wave, which change
the propagation behavior of the disturbance. As
the oscillation continue, the phase - lag
becomes higher and higher. This phase - lag
phenomenon in turn will increase or decrease
the aerodynamic damping of the flow depends
on wheter it is in-phase or out of-phase with the
oscillation and becomes the main factor in the
generation of transonic dip. It was found that
phase - lag in aerodynamic lifting forces is more
significant compared to the one of the
aerodynamic moment. Surface pressure

~ distribution at time step kt = 36, 72, 144 and

180 at wing section 25% span from the root are
shown in Figure 3.
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—ae— Cpu - Euler
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Cpt - Euler

x/c
x/c

d)kt=180
a) kt=36
Fig. 3. Unsteady pressure distribution of NACA 0012

ia M =0.755, k = 0.05, xc = 0.25¢, a, =0.02°,a, =251°,

nfhy—  Cpu- TSD
124 Comparisons with the Euler solutions at all four-
-1.0 time steps are in very good agreement except
08 ] for the shock position and strength. As was
06 | found in the steady cases, shock positions
a predicted in this study is further forward and
Kk stronger compared to its Euler position. This is
02 4 mainly due to the fact that the present
0.0 procedure has not yet employ boundary layer
0.2 displacement correction on the surface. Shock
04 ] movement during the oscillation is given in
o] Figure 4.
0.6
0.90 I ———
N —O— xs-TSD
0.75 — —— Aipha
-1.40 P
~O— Cpl-TSD
-1.05 4 ~—&— Cpu- EULER
~4— Cpi-EULER
070 4 0 30 60 % 120 150 180
Time Step
§-035 1 Fig. 4. Shock location during oscillation of
NACA 0012, M = 0.755, k = 0.05, xc = 0.25¢,
0001 o, =002°,a, =251°
03 1 This figure shows that there is phase - lag, also,
070 — - between pitching movement of the wing with the

shock movement on the upper surface of the
xe ‘ ' wing. Comparison with Euler results shows that

the inviscid shock movement amplitude is larger

c)kt=144 than that for viscous flow which means that
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shock - boundary layer interaction in general will
decrease the strength of the shock and also its
movement amplitude. The different in shock
position at higher oscillation frequency (k =
0.162) is more significant, as shown in Figure 5.

0.90

~2A— x5~ Euler
—3— xs-TSD
———  Alpha

0.75 —

0.60 —

xfc

0.45 —

0.30 —

L e B Ly e mae e o e B o e B
0 30 60 90 120 150 180 210 240 270 300 330 360
Time Step

Fig. 4. Shock location during osciliation of
NACA 0012, M = 0.755, k = 0.162, xc = 0.25¢,

o, =002°,a, =251°
Unit Pulse Displacement

The unit pulse transfer function method
is used to calculate the elements of GAF matrix
for flutter calculation of the wing. Figure 6
shows the total lift and moment response, C,
and Cy, at the grid point located at the wing tip,
quarter chord length from the leading edge,
induced by the displacement in the second
mode, at Mach number M = 0.8.

0.75

-0.25||||||I|||1|||||I||

0 30 60 90 120 150 180 210 240 270 300
Time step

Fig. 8. Ciand Cn response

The wing is given a displacement according to
Eq. [10] with the pulse amplitude, r, , is taken
equalto 0.1 ,a=4.05,%t,=17.5 At and At =
0.01. The pulse amplitude have to be selected

in such a way that it is not so large that the
response become divergence, but so small that
the response becomes inaccurate. The
response becomes steady, returning to its initial
value, quickly in 300 time steps after the wing
returning to its steady position.
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00 03 05 08 10 13 15 18 20 23 25
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a). FFT of pulse input
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b). FFT of Ciresponse

g
025 +—r 1T T rr T T T T

00 03 05 08 10 13 15 18 20 23 25
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¢). FFT of Cry response

Fig. 7. FFT of pulse input and aerodynamic output
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Since at this pitching amplitude, the flow has
weak shocks so that the flow is not highly
nonlinear, a quick converged response can be
expected. Fourier transform of this unit pulse
and response is shown in Figure 7.

The dots in this figure represents the discrete
values of the response after FFT, meanwhile
continuous line represent their Pade polynomial
approximation. Because the response is smooth
enough to give a well distributed FFT values;
Pade approximation could represents them with
a smooth and continuous function also. This is
very important for the use in flutter analysis of
the wing. Using these Pade function, the
elements of GAF matrix at certain value of
Mach number and wing mode shape as function
of motion reduced frequency, k, are calculated
from Eq. [8]. Flutter analysis of the wing
required the calculations of the GAF matrix for
every value of Mach number, M, and mode
shapes used in the analysis. Using this unit
pulse method, the number of flow field
calculation needed to compute all of these
elements, at a certain value of M, is equal to the
number of mode shapes being used in the
analysis. In the hamonic oscillation method,
this number will be equal to the number of the
mode shapes multiplied by the number of
reduced frequencies of interest.

Aeroelastic Calculation

Flutter calculations in frequency -

domain are carried out using mode shape and
natural frequency obtained from NASTRAN.
Calculation are made by solving the aeroelastic
stability equation, Eq [7], for free stream Mach
number M = 0.8 at cruising altitude of 35.000 ft
above sea level
Figure 8 shows the wing response at various
values of dynamic pressure, q.
Flutter velocity is defined when the aerodynamic
damping equal to zero or when the two
frequencies coalesce. It was found that wing
response start to diverge when q become larger
than 1.375 or Qemica = 1.375. Variation of critical
dynamic pressure (or flutter index) with Mach
number is given in Figure 9. As the free stream
Mach number increasing, flutter index of the
wing decreasing until the minimum value of
0.855 at Mach number M = 0.85 before it
increasing back.
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Fig. 8. Acceleration response of torsion modes
AR =20, NACA 0012, M = 0.8,
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This dip in flutter index is so significant because
of the shock that appears in the flow field is so
strong with high phase - lag.

1.00

0.95 -

Flutter Index

0.90 -~

0.85 T T T T T T T

0.50 0.60 0.70 0.80
Mach Number

0.80

Fig. 9. Flutter index versus Mach number

CONCLUSIONS

A three - dimensional flow solution procedure,
called NTRANS, was developed based on the
solution of nonlinear transonic small disturbance
equations. The solution

procedure applied in this module is the finite
difference AF algorithm with two significant
improvements, which are : a). The use of cyclic
acceleration technique to increase the
convergence rate of the calculations and b).
Application of unit pulse transfer function
method in the calculation of the GAF matrix. An
integration module was a device to integrate
this module with NASTRAN code (which
calculate the structure natural frequencies and
mode shapes) for aeroelastic calculations.

The procedure was applied to
determine the unsteady aerodynamic loads on
aircraft structure in subsonic and sub-transonic
flow regimes. Numerical results show that this
procedure is accurate and efficient for routine
use in aircraft structural design and analysis.
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