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Abstract: A procedure is presented which yields flutter
diagrams using an aeroelastic simulation for a given flight
condition, in combination with a parameter analysis for
an equivalent linear aeroelastic model.

This equivalent model is constructed by applying the
MIMO technique to the time signals obtained from the
aeroelastic simulation.

The procedure strongly reduces the amount of non-
linear simulations needed, for instance, at transonic flow
conditions, where the linear mode! can be used as a pre-
dictor for the critical flutter boundary of the nonlinear
system.

The paper presents the MIMO method and demon-
strates its applicability for an aeroelastic testcase.

Introduction

Efficient and reliable prediction of flutter boundaries at
nonlinear conditions is an increasingly important aspect
of the modern multi-disciplinary aircraft design and anal-
ysis process. For such conditions, present for instance
at transonic flight, at high angles of attack or in case of
structural nonlinearities like backlash, aeroelastic time-
marching simulation of the behaviour of the flexible air-
craft is a necessary complement to conventional linear
methods. Contrary to the latter methods usually oper-
ating in the frequency domain, an aeroelastic simulation
requires a separate signal analysis procedure to determine
frequency and damping information. This procedure is a
parameter identification process in which the aeroelastic
model is assumed to be linear and a conventional signal
analysis procedure is carried out (e.g. Prony fits, ...), like
in the analysis of Ground Vibration Tests or Flutter Flight
Tests. Disadvantage is that this procedure only yields re-

sults.in one point of the flutter diagram, and a large num-.

ber of simulations would be required to obtain sufficient
information about the critical flutter boundaries.

As an alternative to the conventional curve-fitting pro-
cedures recently a more sophisticated parameter identi-
fication process has been developed, which constructs
an equivalent linear aeroelastic model having the same
properties as the full nonlinear model. This linear model
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subsequently may be used to obtain complete flutter dia-
grams in the same way as obtained in conventional flutter
analyses, by varying the parameters underlying the iden-
tified model, such as dynamic pressure. The parameter
identification process underlying the present approach is
MIMO. The combination of this process with aeroelastic
simulation drastically reduces the computational effort
needed at nonlinear conditions and yields a close com-
plement to conventional methods.

The adoption of MIMO-class(!) technology, allows for
the possibility to predict the system state at multiple
flight conditions from a MIMQ identification of a fully-
coupled simulation at a single flight condition, by ex-
tracting useful data (e.g. Generalized Forces) from the
coupled simulation which can be used for other purposes.
*

By the aforementioned continuation it is expected to
increase efficiency, so that industrial aeroelastic studies
might be performed with fully-coupled CFD methods in
assessing the critical state cases for a large state space.

The multi-point strategy is explained in Figure 1.

In the present paper the MIMO process is described
and its applicability is demonstrated’in combination with
time-marching aeroelastic simulations.

Stability analysis with time-accurate CFD methods is
usually performed with one of the following two strate-
gies:

1. pk- method (eigenvalue) analysis. The aerody-
namic data required for these methods might be sup-
plied by:

i harmonic exitation in time domain which is in~
efficient when the state space is large.

time-linearized aerodynamic methods which
operate in the frequency domain i.e. for har-
monic motions and are known to be limited
in frequency especially in the transonic speed
regime.

* It should be noted that also the analysis might provide a prog-
nostic way to speed up the simulation by allowing for larger time
steps(?)
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iii impuls-response time domain simulation which
is prone to noise and is also inefficient when
the state space is large.

iv diverging rate method. The latter method is
based on linearized form of the equations and
is suitable in a design cycle because the turn-
around time can be brought back to the min-
imum. The diverging rate method has been
introduced by Hounjet.(3)

2. Fully-coupled simulation. This method is espe-
cially useful in case of strong nonlinearities and a
large number of vibration modes. For a single point
the turn-around time is always less than the turn-
around time when method 1.i-1.ii are used for the
study of a general stability problem. For a restrictive
study methods 1.i-1.iv might be more efficient than
method 2. It should be mentioned that method 1.iv
can be embedded reasonably easy in a time-accurate
CFD method.

Experience at NLR has shown that the approach in the
k-domain, the s-domain and the time-domain are analo-
gous, as long as the assumption of linearity is not violated
and the frequency domain methods have no inherent lim-
itations’ which impair the mapping (fitting of generalized
forces) between the separate domains.

Therefore the fully-coupled simulation may also be per-
formed using a time integration approach of the gener-
alized forces once adequately fitted in the frequency do-
main. This eases applications and improves confidence
for the coupled simulation if based on linear aerodynam-
ics. ¥ The presentation describes a linear time simulation
method and a recent application.

Time signal analysis

As many different time response signals may have to
be analyzed a comprehensive set of methods for curve-
fitting should be available. In general each time response
signal consists of contributions of various modal modes,
of which the frequency and damping of each one have to
be determined.

Therefore, during an unsteady simulation the data
must be analyzed on-line in the time domain in order to
determine the behavior of a coupled system. The main
purpose of this analysis is to determine the frequency and
damping characteristics of the discrete time signal. To

fulfil that task the following common SISO approaches.

might be used®)):
1. The exponential sine fit, ()
2. Prony's method,

3. Fast Fourier Transform analysis,

tdue to program inconsistencies

$Damping and other quantities of intérest might be straightfor-
ward obtained from the whole aeroelastic system matrix without
simulation

4. Curve-fitting of transfer functions.

Very recently, in a cooporation with TUDelft a feasibil-
ity study has been started to apply the promising MIMO-
class techniques for that purpose.() They will enhance
the analysis capability as depicted in Figure 2.

MIMO-class system identification

The adoption of MIMO() technology permits a black
box § evaluation of the aeroelastic system in such a way
that after a single fully-coupled simuiation for one flight
condition the system state for other flight conditions (e.g.
Qdyn) Might be predicted and to extract useful data (e.g.
Generalized Forces) from the coupled simulation which
can be used for other purposes.

The main purpose is to extend the single point applica-
tion of coupled simulation methods to multiple points to
make way to postprocessing activities, pk-, k-method etc,
based on data extracted from fully-coupled applications.

A 2-DOF example is presented in Figure 3 where we
want to assess the transfer functions of the general-
ized forces from the coupled simulation using only the
time trace data. From the coupled responses of z and
u at a fixed ggyn, the MIMO analyses will deduct the
A,B,C, D, Qu, QIQ, Q21 and Q22. The condition of the
system is equivalent to the amount of proportional feed-
back. A,B,C and D are the system matrices of the
elastomechanical system, @ are the tranfer functions of
the generalized forces, gqyn the dynamic pressure, z is
the elastomechanical state, equivalent to the generalized
coordinates and u is the aerodynamic force equivalent to
the sum of generalized forces per mode.

The implementation of the MIMO class identification
algorithms in the AESIM environment(® | is aimed at
the reduction of the aerodynamic model that operates
within the closed loop system of elastomechanical and
aerodynamic modes. The closed loop character of the
problem results in a requirement for an external refer-
ence signal, in order to apply closed loop identification
procedures. The complete absence of external noise, as
the data at hand is obtained from simulations, and the
lack of uncorrelated input signals makes it impossible for
any identification procedure to distinguish between elas-
tic and aerodynamic modes.

This problem, together with the low order for which
persistency of excitation can be obtained, is pointed out
by Hounjet,Eussen and Soijer in.(*) However, identifica-
tion of the complete, coupled system as a whole is pos-
sible in the time domain, resulting in aeroelastic models
that describe both elastic and aerodynamic modes. For
this purpose, linear regression models are used. In case
of the T-tail case as presented in.(*) | a dynamical model
is estimated from first and second order differentials. In
case of the 3D AGARD standard aeroelastic configura-
tion, a static regression model is used to avoid erroneous
modeling of elastomechanical modes.

$No knowledge is assumed of coefficients of the structural and
aerodynamic system
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Decoupled MIMO identification

For the decoupled aerodynamic model as shown in Figure
3, the generalized forces f are expressed in terms of the
generalized displacements d = g and speeds s = ¢:

N-1
fe= Z (ansk—n + bndk—n) + €.

n=0

1)

In this equation, N is the model order and a and b
are the series of regression coefficients. ¢ is the model
error. Both the generalized forces and the speeds and
displacements are vectors that contain as many rows as
there are dynamic modes. This number is called the
mode order M. The equation above can be written in
matrix form:

Sk

Sk—N

[fk]:[A B] dk

di-nN

The matrices A and B are of size M by MN each.
From a time series of experimental data, either from mea-
surements or simulations, the optimal values for the ma-
trices A and B are determined. In order to apply a least-
squares estimator, the data for all time points 0 to K are
organized columnwise:

SN SK
_ S0 SK—N
[ fk]=[A B] e de | *€
| do dx-N

If the most right-hand matrix of this expression is re-
ferred to as X, the optimal regression matrices 4 and B
can be found if the inverse of X X7 exists:

— . -1
(4 B]=[/~ fr 1XT(XXT)T. (4)

Note that the existence of the inverse of X X7 can not
be guaranteed; the applicability of the method therefore
depends on the data set at hand. However, for systems
for which all dynamic modes have been excited properly,

identifiability of the matrices A and B is readily achieved.
Coupled MIMO identification

Identification of a coupled dyna;nic model is handled
along the same lines as sketched above. The system at

hand is an autonomous dynamic system with no inputs
and two sets of outputs: one for the speeds, and one
for the displacements. Since speeds will be introduced
in the model automatically as the time derivatives of the
displacements, the model is designed to model displace-
ments only. The displacements for each of the M modes
are grouped in the vector z € RM*L

For the discrete time systems, the zero-order differen- .-
tial is set to be equal to the displacements themselves:

A% = ZT.

(5)

From this, the higher order differentials are derived:

Ap =AY -A) =z - (6)
A = Ak L — AL =240 =234 + 2 (7)
(8)

The propagation of displacements in the dynamic sys-
tem is now expressed in terms of the first order differen-
tial:

(9)

Likewise, the first order differential for each new time
step is expressed in the second order differential for the
preceding time step:

L
Tryr = T + Af.

A = AF + A2 (10)
Finally, the second order differential is modelled as a
linear combination of the zero and first order differentials:

(11)

The complete system can now be expressed in state-
space form, yielding the displacements and first order
differentials - hence the speeds - for a new time point.
The state vector is a stacked column vector of zero and
first order differentials, each of size M by 1:

Fa S PR

To identify the unknown matrices A and B, the first
order differentials for all available time points - excluding
the very first - are grouped columnwise to serve as a set of
observations for a least-square estimator. The regressors
are the stacked displacements and first order differentials
for all time points, excluding the very last:

A7 = AAY + BAL +e.-

I
I+B

xz
AL

(12} -

[ Af AL ]=[4 I+B]X+e (13)
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in which
Fj(s) = Aj+A7s+4fs+  (19)
X = [z]z Z]Z—L (14) " a61+a133+~..+a;]_1s"—1
Lo AN 1+ BYs+---+ Bisn
X e RIMX(N-L) (15) '

. . . o Transformation to state-space form
The optimal matrices 4 and B in a least-squares sense P

are found using the pseudo-inverse of X: The rational polynomial, or the residual of the partial -
fraction, is transformed to state space form:¥

- - -1
[Z 1+B]=[aF ... AL ]xT(xx7)" dyy g
Fij(t) = Adqi(t) + AV =L + AY -+

(16) 35 (8) 0 9(t) + Aj ar T e

Like for the static system described before, identifia- o

bility is dependent on the existence of the matrix inverse +( 8 F )| 27 | +DYg(t) (20
of XXT. 24
3.
Time-simulation with linear aerodynamics

To ease applications and to build confidence a cou- zy o 1 90 zy
pled simulation should also be run based on linear aero- @ |=( 0 0 1 zy
dynamics. This requires the generalized forces (transfer 7 of af of x5

functions) which are in general available in the frequency
domain to be fitted (+(8) and transformed to the time-
domain.(®) A feasibility study with 2-D airloads and 3-D 0
airloads was performed in.(%) +1 0 |gi(t) (21)
Time-simulation with linear aerodynamics is performed 1
» along the following steps:

e Padé approximation aij = - 1,_
=7
The assumption is made that the behavior of any un- ?’f
steady parameter of interest such as an aerodynamic ol = BY
load or a pressure coefficient can be described by an 2 BY
appropriate form for the transfer function which is a - B
ratio of two s dependent polynomials which is known af = - _fj
as the Padé approximation: By

gi— G _ a5 1

1 = 5 pil Rt

AT + A5+ AYS2 4. . 4 Al g™ Bs 53 B3”

Fij(s) = =0—2 = =— (17) y al a¥ BY

1+BYs+Bys?2+---+ Bysn = _1“___3?_1.31

ij ij Bl

By BJ B;

with: i = as ay By

3 T Ba T BBy

By Bj Bj

_ij
s=d+jk (18) pii = 9%

The complex curve fitting procedure is used also here

‘to obtain the approximation. with:

o Partial fractioning

. ) s . 1 n
In order to obtain a good fit of the generalized forces, A = AY ( v )
the order of the numerator is bound to m < n + 2 siV/p

. . n

and the order of the denominator, n, is set to a max- B = pgiif_ 1
imum of usually 3. This does not imply that every n "\sVy/n
generalized force, F;;, actually has three states. If . = 1 n
m is larger then n a partial fractioning has to be a,;] = aif( )

. ; > . sV
performed in order to ease transformation to time g
domain: TThe equations are given here for a third order system.
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x is an auxillary vector, s is the spatial synchroniza-
tion factor, V and p are explained in.(10)

Two- and three-dimensional applications are dis-
cussed int*) where this system is solved using a New-
mark scheme.(®)

o Aeroelastic coupling

Coupling of the generalized mass, stiffness and force
comes down to a correct assembly of all fitted Fj;
components into the generalized aeroelastic system
equations, see appendix A. The order of the resulting
system is unkown, but never exceeds modes x (2 +
(n x modes)).

e Time Simulation

The system, as obtained in appendix A, is solved
using a Newmark scheme, for a range of dynamic
pressures.

o Time signal analysis

The resulting time signal is analysed using decou-
pled MIMO identification, as described before. The
resulting damping and frequency data are assembled
in a flutter diagram, as'shown in the section on the
three-dimensional application.

Applications

The examples here focus on current ongoing activities
with respect to the time-analysis in 3-D. 2-D examples
were already presented in.(4)

Three-dimensional application

Calculations have been performed with GUL for the
3-D AGARD standard aeroelastic wing at Mach=0.901.
This configuration is described in.(1®) Four modes have
been selected.

Figure 4 shows a comparison in the frequency domain
between the original data (circle) and the fitted data
(line-cross) which show a good agreement. More detailed
results have been presented in.(4)

Aeroelastic coupling was performed next according to
appendix A. The order of the system was 32.

" Figure 7 shows a typical result of a subcritical time
simulation.

Every time simulation has been analysed using decou-
pled MIMO identification and the results are shown in

Figures 5-6, together with the results of the NLR PK-

method using exactly the same generalised force data.
In the Figure are also two points representing the fre-
quency and damping values of a fully coupled non-linear
full potential AESIM(®) simulation of the wing. All three
methods give the same flutter speed. The difference be-
tween the linear time simulation and the NLR PK-method
is in the damping per mode. The character of the flutter
changes from mild (NLR PK-method) to very mild (lin-
ear time simulation). Also the non-linear full potential
simulations indicate a very mild character close to the

flutter point. The symbols in this figure are explained in
Table 1.

MIMO-class application

The applicability of the MIMO method® in flutter
analysis has also been presented in{®) for an aeroelas-
tic investigation which was conducted for one of the 3-D
AGARD standard aeroelastic configurations in subsonic-
and transonic flow. This configuration is described in.(1?)
The configuration for dynamic response | wing 445.6
model "weakened no. 3" was selected at Mach=0.901.
The data were obtained from.(2) This section summarizes
the results obtained in(*) with the decoupled method.

Figure 8 shows the generalized forces as obtained from
simulation with the identified decoupled MIMO model,
together with the original data. The data is plotted for
time points after the transition has damped out. An ex-
cellent agreement is shown between both datasets (they
coincide entirely). -

A slightly different decoupled model structure MIMO*,
including auto regressive terms on the outputs, leads to
slightly larger errors for the same simulation, as shown in
Figure 9.

Figure 10 shows recent results of a regression model,
with model order one resulting in a static model de-
coupled MIMQ®that does not use any information from
the time history. Errors below 10% are achieved for all
modes.

Figures 11 and 12 and show results of the the main
purpose of the excercise. We increase the airspeed to a
supercritical value and apply the MIMO results obtained
from fitting the subcritical airspeed data and make the
comparison with results of the aeroelastic simulation at
the higher airspeed. The linear MIMO model prediction
performs very well for the lower 3 modes. Mode 4 is over-
predicted. The modified model MIMO* results in smaller
errors than the model from the original model set. Re-
sufts of MIMQ? have yet to be investigated to decide
which of the model results in the best estimates for aero-
dynamic modeling in aeroelastical closed-loop systems.

Conclusions

In this paper aspects of time-analysis in aeroelasticity
have been discussed.

The formulation of the MIMO identification procedure
has been presented.

The formulation for dynamic coupling with linear aero-
dynamics has been presented. B

Experience with recent applications and ongoing de-
velopments led to the following observations:

e The procedure for utilization of linear aerodynamics
from the frequency domain to the time domain have
been applied with good results.

o Excellent analysis of time signals can be carried out
with the coupled MIMO-class procedures.

o The decoupled MIMO-class analysis applications have
shown good promise for increasing the efficiency of
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coupled simulations by allowing resuits made for a sin- 0 0 0 0 0 0 0 0
gle flight condition being extented to multiple flight 0 © 6 0 0 0 0 0
conditions. e A 0 00 6 0 ©
0 0 Ag® -+ Ak AcP? -+ AcZ,
- . 0 0 0 0 0 0 0 0
Appendix A: Coupled Aeroelastic system 0 0 0 0 0 0 0 0
The definition of the structural system is described be- 0 0 6 0 O 0 0 0
low. 1 0 0 0 0 0 o0 0
The generalised coordinates ¢¢ for each vibration mode 0 12 0 0 0 0 0 0
may be different in time and are based on the generalized T a}m 0 0 0 0 0 0
modal deflection approach. 0 0 60 1 0 6 0 0
The dynamic deformations are expressed in general- 0 0 021 0 211 0 0 0
ized coordinates ¢ and their associated modal mass M, 0 0 o - ap, 0 0 0
damping D, stiffness K and vibration modes i for N2 0 0 0 0 0 0 1 0
modes which satisfy the equation: 0 0 0 0 0 O 0 1
0 0 6 0 0 o aZZ,
& d 10 0 0 0---0
[M]d—§+{p]—q+[K]q=AF (22) 01 0 0 0---0
T dr 00 My —AAY My, =AA42 0 - 0
— A2 _AA22 @ ...
7 is non-dimensional time. cd o= g 8 Max OAA2 Moz OAA2 (1) 8
Equation (22) is transformed to first order: ) ) ]
: 00 0 0 0 1
oQ and
d— +kQ =
5, TkQ=fQ, (23)
k=
g
: 0 (4] -1 0 [¢] [¢]
gn K —OAA“ K —OA,i?l B -OAA“ B —_2512 g g
5;1]' : K;i - Aﬁgl K;z - A§§2 B; - Aﬁ%l B;: - Aﬁ%z 0 0
0 0 0 [} [¢] 0
where Q = 5 ‘ B 5 6 PN
8tn |’
i (24)
z A=ty - (25)
: si®
N
oQ 1
0 0 00 0 0 0 0 5, =4 (F-KQ (26)
0 0 00 0 o0 0 0
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AD?' AD 00 0 0 0 0
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Figure 4: Comparison of directly calculated (o) and fitted (x) generalized forces for the first four modes of AGARD
wing 445.6 at M=0.901
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Figure 5: Comparison of damping versus reduced speed critical condition
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Figure 6: Comparison of frequency versus reduced speed
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Figure 9: Comparison of decoupled MIMO* fitted (...)
with auto regressive terms on outputs and original (-)
generalized forces data for AGARD aeroelastic system at
subcritical flight condition
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Figure 10: Comparison of MIMQ® fitted (...) with re-
gressive terms on outputs and original (-) generalized
forces data for AGARD aeroelastic system at subcritical
flight condition

10

=@
£
b=
& MSE 7.422%)|
F=1
k3 i e -
-5 . L . A . . . . .
Q10250 100 150 200 250 300 350 400 450 500
5 ' \
£ of MSE 16.23%
_5 i L i 1 1 L il 1. 1
Q40° 50 100 150 200 250 300 350 400 450 500
£ ) \ MSE 8.773%
g of A ] \ ’
=
S : . s s . . s .
Q10?50 100 150 200 256 300 350 400 450 500
_ 2 - T r . v v . . T
2
@ MSE 47.18%)
g or E
2
f=4
™~ 2 I 1 1 I L n 1 1 L
0 50 100 150 200 250 300 350 400 450 500
Time

Figure 11: Comparison of MIMO predicted {...) and
reference (-) generalized forces data for AGARD aeroe-
lastic system at supercritical flight condition
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Figure 12: Comparison of MIMO* predicted (...) and
reference (-) generalized forces data for AGARD aeroe-
lastic system at supercritical flight condition
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