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Abstract

The paper reports a modal formulation of the original
method presented by Lim and Kashangaky, based on the
use of the Best Achievable Eigenvectors in damage
detection problems. The method requires the
measurement of both frequenci¢s and mode shapes . The
structural damage is located by computing the Euclidean
distances between the measured mode shapes and the
best achievable ‘modal’ eigenvectors. The method is able
to detect loss of both stiffness and mass properties, even
though in this paper only the loss of stiffness will be
analysed. Two numerical examples are reported to
investigate the applicability of the modal formulation.
Finally, an experimental validation is also included,
using a ten-bay truss laboratory structure.

Introduction

During the last decade, the structural damage detection
techniques based on modal data have been extensively
investigated, aiming at the definition of an efficient and
reliable method for health monitoring of complex
systems (1-4). Such techniques are often based on
periodically monitoring the modal behaviour in real-life
conditions, in order to identify and localise possible
damage. The damage detection is often formulated as an
inverse updating problem, where the structural
uncertainties are located on the real structure and the
analytical model is considered as accurate.
Unfortunately, the examples reported as successful
generally concern laboratory test structures only. The
main difficulty in the application of these methods is due
to the intrinsically low sensitivity of the modal data to
local changes of structural mass and stiffness. The
minimum detectable structural damage is directly related
to the minimum measurable variation on the modal data,
i.e. frequencies and mode shapes. Another difficulty is
related to the fact that these methods require both a
refined analytical model of the analysed structure and a

Copyright © 1998 by ICAS and AIAA. All rights reserved

significant amount of measured modal data, making
them very expensive and usually impractical for
structures in real-life conditions.

It is convenient to split the structural damage detection
problem into two distinct subproblems: the first
concerning the localisation of the damage over the whole
structure, the second relating to the evaluation of the
damage magnitude. While some of the proposed methods
try to solve these two subproblems simultaneously, others
take advantage of this separation, trying to solve them
step by step separately.

Different structural damage detection techniques have
been proposed in literature. They are based on the
classical optimal matrix modification methods (5-6), or
on the sensitivity-based methods, such as the ones
applied in the field of structural optimisation (7), or on
strategies typical of identification and control problems
(8). Recently, some applications of non-deterministic
techniques, i.e. genetic algorithms and neural networks,
have also been investigated (9). '

This paper presents a different implementation of the
method proposed in Ref. (10), based on the use of the
Best Achievable Eigenvectors (BAE) for the localisation
and identification of structural damage in space truss
structures. In the original method, starting from a well-
correlated finite element model of the analysed structure,
the localisation algorithm is formulated in the physical
space, represented by the degrees of freedom (DOFs) of
the finite element model. This requires the use of global
and local structural matrices expressed in the DOFs set.
In the approach proposed in this paper, the original =
method is formulated in the modal space, represented by
a limited number of low frequency measured modes. The
availability of the local structural matrices in the DOFs
set, very large even though sparse, and not easily
obtainable with standard finite element codes, is thus no
longer required.

Both numerical and experimental results are reported. In
particular, the proposed method has been successfully
applied to detect stiffness damage in a typical space truss
structure, a 3.5 m long laboratory truss structure.

21st ICAS Congress
13-18 September 1998

ICAS-98-4,3,2

Melbourne, Australia




Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

Damage Localisation

As reported in the introduction, some damage detection
methods split the original problem into two phases,
respectively related to the localisation and to the
magnitude identification of the damage. The method
here proposed adopts this approach. It represents a
modification in a modal form of the original Lim and
Kashangaki (10) method where the search for structural
damage is performed by computing the distance between
two series of vectors, the measured eigenvectors on the
damaged structure and the Best Achievable Eigenvectors
(BAE).

Before introducing the modal formulation, it is
convenient to recall the method in its original form, as
reported in the original paper . For further details see
Ref. (10),

Best Achievable Eigenvectors

The equation of motion of a generic n DOFs system may
be expressed as :

Mx + Kx=f(t) 2)

where M and K are mass and stiffness matrices of the
system (n x n) and x and f (t) are the displacements and
external forces vectors respectively (n x I). The
associated eigenvalues problem is :

K®é=M®A 3

where @ is the eigenvectors matrix (n x r) and A is a
diagonal matrix containing the eigenvalues (r x 7).

When a finite element scheme of the original structure is
adopted, the mass and stiffness matrices can be
expressed as a sum of the element matrices, i.e.

K=§p) K,
i=1

where K; and M; are mass and stiffness element matrices
and p is the number of elements. When the structure
shows a damage, the global mass and stiffness matrices
can be represented as a sum of the original element ones
multiplied by a reduction factor. While the method is
able to consider damage concerning both the mass and
the stiffness matrices, in the following only structural
damage concerning the stiffness matrix will be taken
into account.

The stiffness matrix of the damaged structure Kq is
thus :

and M=§p:Mi
i=1

C))

7
Ky=K,+ ) K,

i=1
where K is the stiffness matrix of the original structure
and g; are the stiffness reductiod factors for each
element . For example, considering the coefficient qy, if
the corresponding element is not damaged, a, is equal to

&)

zero, while if the corresponding element is completely
removed, ay is equal to -1, so generally g, ranges from -
1t00.

If we measure r modes on the damaged structure,
replacing Eq. (5) in Eq. (2) we obtain :

p
z a; K; d=M; P A, -K; P
i=1

where the subscript 7 refers to the measured data. In the
case of mode shapes, as they are measured only on some
nodes of the structure, a completion operation extended
to all the DOF's is required.

For the j-th measured mode, Eq. (6) can be rewritten as :

14
2 a; E}l K; ¢rj = ¢xj

i=1

)

being

E; = (0} M, —K.S) ®)

where ®,; and ¢,; are the eigenvalue and eigenvector
measured on the damaged structure. It is very important
to underline that the matrix E; is invertible since, due to

the damage, (D[j * (Dj.

Nevertheless, when the frequencies of the damaged
structure are almost identical to the original ones, the
matrix E; can appear ill-conditioned. From this point of

view, as reported by the authors, the method establishes
a-priori a lower limit of the damage to be identified, one
for which E i becomes ill-conditioned.

Introducing the following matrix :
_g-!
the Eq. (7) can be expressed as :

I3 -
D ai A b= 0,

i=1

(10)

If the reduction factors are grouped into a vector s, in
order to identify the damaged element it is necessary to
check the influence of each element on the considered
mode shapes. Thus, for the k-th reduction factor, the

basic equation of the damage detection algorithm is :
AyjYe =0 (1D

12)

where

'ij=5k¢:j for k=1729""p

Eq. (11) is very important because it can be satisfied only
if the measured mode ¢, ; is a linear combination of the
columns of A,;, i.e. ¢,; must lie in the subspace defined

by the columns of A ;. The main consequence is that if

damage has been caused by a loss of stiffness in the £-th
element, and this damage is reflected in mode j, then the
vector ¢, ; will lie exactly in the subspace defined by the

(6) -
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columns of Ay;.

To evaluate whether or not the j-th measured mode lies
in the subspace defined by the columns of A, j we have

to use the definition of the BAE. The Best Achievable
Eigenvector for the j-th mode and the k-th element can
be computed by :

05 = A Ay 0, (13)

where the superscript A indicates the pseudoinverse of
the matrix. If the measured mode ¢, ; lies in the

considered subspace, then ¢,; and ¢7; are identical. If

the damage is caused by another element or if it does not
influence the j-th mode, the two vectors are different.
The identification of the location of the damage requires

the computation of the vector d)f’j for all the potential

damaged elements and the calculation of the distance
between these vectors and the measured one. A distance
equal to zero indicates the damaged element. The
distance between the two vectors can be computed using
the Frobenious norm :

dkj = “q)tj - ¢;lj

For an assigned structure, having e potentially damaged
elements and using r measured modes, the method
requires, for the identification of the damage location,
the evaluation of the ¢ x r D matrix containing the
Frobenious norm of the Euclidean distances. If the
damage is located on the k-th element and mainly
influences the j-th mode, then the dy; element of the
matrix will be close to zero and the others will be
significantly higher. The localisation of the damage is
simply performed by computing the minimum of the
Euclidean distance matrices.

(14)

F

Best Achievable Modal Eigenvectors

In the original method previously reported, starting from
a well-correlated finite element model of the structure
analysed, the localisation algorithm is formulated in the
physical space, represented by the degrees of freedom of
the finite element model. This requires the use of global
and element structural matrices expressed in the DOFs
set. This can be difficult in many cases, when standard
commercial codes are applied for the finite element
analysis, since the element structural matrices in the
DOFs set are not easily obtainable and they are very
large even though sparse. The basic idea is thus to
formulate the original method in the modal space,
represented by a limited number of low frequency
measured modes. In this way, the availability of the local
structural matrices in the DOFs set ismo longer required.
In Eq. (6) and following, the global and element mass
and stiffness matrices are simply replaced by the

corresponding modal ones. These are obtained by pre-
and post-multiplying the original matrices by the modal
basis, composed of the low frequency measured modes.
Since the operation represents a non-singular
transformation, the main architecture of the damage
location algorithm is not modified, and the localisation
of the structural damage is once again performed by
computing the minimum of the Euclidean distances
matrix D.

Damage Identification

Generally, the damage identification phase is simpler
than the previous one, especially in-cases where only one
damage at time is considered, as in the cases reported in
the following. The method here adopted is based on a
standard  structural  optimisation  approach, as
implemented in MSC/NASTRAN So0l200. The damage
identification problem is formulated as an updating
problem (11), where the design variables are the
geometric or mechanical properties of the elements
identified in the localisation phase as the most probably
damaged. The constraints functions used during the
optimisation are expressed in terms of eigenvalues and
the objective function to be minimised represents the
mean error between the analytical and measured
frequencies.

Numerical Example #1: Tenbar

The first numerical example concerns a very simple
structure, often used in literature as a test case for
structural optimisation programs, and known as Tenbar.
It is composed of 10 steel rod elements, connected to
form the two-bay reticular truss shown in Figure 1.

o8]
Y L @
%x &)
9
) @

Figure 1 - The Tenbar structure

This test case, due to its simplicity, has been used to
investigate the applicability of the modal formulation
here presented. The structure is modelled by 10 elements
and 4 nodes, for a total number of 8 DOFs. Many cases
concerning different structural damages have been
analysed, but here only the results related to a 10 %
stiffness loss of element N.2 are reported. At first, the
Best Achievable Modal Eigenvector method has been
applied using all 8 modes of the structure. In this case,
the modal approach is equivalent to the spatial one, since




Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

the number of modes is equal to the number of DOFs (8
in both cases). Figure 2 shows a 3D bar diagram
representing the final Euclidean distances D matrix,
where the highest values have been truncated in order to
simplify the representation. It appears evident that the
localisation method correctly identifies the element N.2
as the damaged one. In fact, in correspondence of this
element, the Euclidean Distance is close to zero for all
the considered modes.

23456 7 8910
Elements

Figure 2 - The D matrix using 8 mode shapes.

In the second case only the first three modes have been
used to localise the damage. Figure 3 shows the resulting
D matrix.

s 1. 2 3 4 5 6 7 8 9 10

Elements
Figure 3 - The D matrix using 3 mode shapes.

As in the previous case, the damage is correctly
associated to element N.2, even though now other
elements, such as N.8 for example, show a distance close
to zero, but not for all the modes considered.

In both cases, the magnitude of the damage has been
successively computed by means of a very simple
structural optimisation.

Numerical Example #2: TESS

The first numerical example, due to its simplicity, is not
sufficient to demonstrate the applicability of the method
here presented. A second more complicated numerical
test case has thus been checked. The new numerical test
case is represented by the TESS structure (Truss
Experiment for Space Structures), a 19 m, 81 Kg slender
truss structure composed of 54 cubic modules made of
plastic tubes, developed at the Department of Aerospace
Engineering of Politecnico di Milano. Figures 4 and 5
show the basic cubic module and the structure suspended
from the ceiling by 3 pairs of metal springs during some
dynamic tests. In the following, only the numerical
model has been considered. It is composed of the first 24
natural modes, in the 0.3-24 Hz range, computed by
MSC/NASTRAN using the updated mesh obtained after

the modal tests.

node #1

Figure 5 - The Tess structure.

Due to the configuration of the basic-cubic modules, the
truss shows the modes in the horizontal plane (horizontal
bending and axial modes) completely separated from
those in the vertical plane (vertical bending and torsion
modes). As a consequence, the sensitivity of the modal
parameters (frequencies) with respect to the structural
elements also appears as separable, i.e. the horizontal
longerons mainly influence the horizontal bending
modes, while the vertical longerons and the diagonals
mainly influence the vertical bending and torsion modes.
Many tests based on different magnitude and location of - -~
structural damage have been investigated. In the
following, only the ones concerning a loss of stiffness
located in the horizontal longeron elements are reported.
The horizontal longerons are composed of 54 truss
elements each . In order to maintain the symmetry of the
structure, the same damage in the two corresponding
elements of both the longerons has been supposed. Four
structural damage cases have been considered, each with
the same loss of stiffness (30 %) but with a different
length along the truss, equal to 6, 3, 2 and 1 bays
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respectively. To do so, four ditferent variable linking
operations have been used, grouping the elements of the
horizontal longerons as reported in Tab. 1.

Case No. | Total number of | No. of bays for each
Design Variables Design Variable
1 6 9
2 18 3
3 27 2
4 54 1

Tab.1 - The different variable linking test cases.

In all the cases analysed, the structural damage is
associated to the design variable N.7. The modal basis
used during the computation is composed of the first 8
modes in the horizontal plane, i.e. the first seven
bending modes and one axial mode. The ¢lobal and
elements modal stiffness and mass matrices are exported
from MSC/NASTRAN by altering the SOL103
eigenvalues analysis. Only the modal formulation of the
BAE method has been used to localise the structural
damage in the four cases considered. The results
obtained have demonstrated the capability of the method
to correctly localise the damage for the first three cases,
while in the fourth case some numerical problems have
been encountered, due to the ill conditioning of the
matrix L. Nevertheless, it must be remembered that in
this case, where the 30 % loss of stiffness is concentrated
in the element N.7 with a damage length of only one bay,
the maximum change in frequency is about 0.2 % for the
sixth horizontal bending mode. Figure 6 shows the final
D matrix for the smallest identifiable structural damage,
i.e. damage length equal to two bays (test case N.3).

damage

Elements

Figure 6 - The D matrix for the test case No. 3 : length
of structural damage equal to two bays.

The localisation method correctly converges to the
design variable N.7, the only one for which the
Euclidean distances are close to zero for all the
considered modes. The main effect of the modal
formulation versus the spatial one is a sort of diffusion of
the damage: the final D matrix shows many small
terms, even though the column related to the damaged
element is the only one composed of terms two orders

smaller than all the others.

Experimental validation: the MiniTESS structure

To experimentally validate the BAE method in the
modal formulation here presented, it has been applied to .
localise structural damage in a typical laboratory space
truss structure, a 3.5 m long modular truss, composed of
10 basic tetrahedral modules, as shown in Figures 7-8.

Basic module

Diagonals

hybrid PVC-Aluminum

Longerons diagonal

Battens

Figure 7 - The basic module.

Main longeron

>

5

SENS,
WV

27

Damaged element

Figure 8 - The MiniTESS structure.

Each module is composed of 6 battens, 3 longerons and 2
diagonals, made of plastic tubes, and 1 diagonal made of
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a hybrid PVC-aluminum element.

First of all, an accurate modal analysis of the structure
has been performed . A single-point excitation using a
40 Hz bandlimited noise and 30 piezoelectric
accelerometers in the Y and Z directions have been used
to identify the first 7 mode shapes, 3 bending modes in
the XY plane, 2 bending modes in the YZ plane and 2
torsion modes. A very important step in the application
of any damage detection method is the availability of a
well-correlated finite element model of the structure. An
MSC/NASTRAN finite element model of the MiniTESS
structure has been adopted : Table 2 shows a comparison
between the numerical and the measured frequencies.

Measured Freq. | Numerical Freq. Err.
[Hz] [Hz] [%]
2.97 3.14 -5.93
4.39 5.15 -17.25
11.19 11.38 -1.72
15.65 16.66 -6.45
22.07 27.73 -25.64
33.28 34.28 -2.99
36.73 38.18 -3.96

Table 2 - Comparison between the measured and the
numerical frequencies before updating the model.

Figure 9 - The first 7 measured mode shapes.

Since the numerical-experimental correlation is not
accurate enough, a model updating operation has been
performed using the structural optimisation solution

(SOL200) of MSC/NASTRAN.

Measured Freq. | Numerical Freq. Err.
[Hz] [Hz] [%]

2.97 2.95 +0.67

4.39 5.10 +1.63

11.19 11.14 +0.45

15.65 15.79 -0.89

22.07 22.37 -1.36

33.28 33.45 -0.51

36.73 36.45 +0.76

Table 3 - Comparison between measured and numerical
frequencies after updating the model.

Table 3 shows a comparison between the measured
frequencies and the numerical ones after the
optimisation. The orthogonality check with respect to the
mass matrix and the MAC test have also been performed
to verify the consistency of the dynamic model.

The degree of correlation has been considered sufficient
and the updated model has been used to investigate the .-
applicability of the damage detection method.

Many structural damages were taken into consideration.
In the following, only the results concerning structural
damage located in the second bay of the main longeron,
obtained reducing the cross area of the plastic tube by
10%, will be reported.

Without With Diff.
damage damage - [%]

Freq. [Hz] Freq. [Hz]
2.97 291 - 2.02
11.19 11.17 0.18
15.65 15.70 -0.32
33.28 33.19 0.27
36.73 36.36 0.99

Tab4 - Comparison between the measured

frequencies with and without damage.

To improve the efficiency of the damage location
algorithm, since only 5 modes in the adopted modal
basis are influenced by the damage considered (bending
modes in the XY plane and torsion modes), only these
have been used during the damage localisation and
identification process. Table 4 shows the frequency
changes due to the structural damage for these 5 modes.
To apply the Modal BAE method previously described,
the global and elements stiffness and mass matrices have
been computed by means of MSC/NASTRAN, altering
the normal modes solution (SOL103) by replacing the
numerical modal basis with the measured one.

Figure 10 shows the final D matrix for the elements of
the main longeron only.

$o00

4 3
(<

s 210

123 4567 8 910
damaged i
Main longeron elements

Figure 10 - The D matrix using 5 mode shapes.

The localisation method identifies as most probable
damaged element the one actually damaged, even though
in this case the terms of the D matrix column related to
that element and corresponding to the fourth considered
mode, are not equal to zero. This could be due to the fact
that the localisation method has been applied directly
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using the experimental mode shapes, without any kind of
smoothing operation: the disturbances always included
in the measured data may influence the final result.
Another possible reason could be the imperfect
correlation between the numerical and the measured
fourth mode, as can be seen in Figure 11, where the
MAC matrix between the numerical and the measured
modes without damage is shown.

Modes

Fig. 11 - The MAC matrix : numerical versus measured
modes without structural damage.

Finally, as in the second numerical example reported
previously, the D matrix shows many terms close to zero,
but only the column corresponding to the actual
damaged element is entirely composed of terms close to
Zero.

Conclusions

Starting from the original BAE method presented in (10)
the paper reports a modal formulation applicable to the
structural damage localisation phase.

Two numericai examples and one experimental
validation are reported to demonstrate the applicability
of the proposed approach. The main difficulty in the
application of the method, both in the original and in the
modal formulation, is related to the difficulty of
measuring the mode shapes with an accuracy comparable
to that obtainable in the measurement of frequencies.
Nevertheless, these difficulties are the same encountered
in the application of any damage detection method based
on this kind of modal data. The use of modal matrices
instead of spatial ones offers some advantages, especially
when using commercial finite element codes.
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