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Wind tunnel model of a high aspect ratio wing
for active flutter control study enters fiutter of limit
cycle oscillation (LCO) type. In order to get better
understanding and mathematically modeling the tran-
sonic flutter for active control, wind tunnel tests were
conducted. During the tests, a typical nonlinear dy-
namics emerged; a nominal flutter without any inten-
tional excitation occurred as a large amplitude limit
cycle oscillation (LC-1I') via a subcritical Hopf bifur-
cation in conjunction with saddle-node bifurcation,
while a small amplitude limit cycle oscillation (LC- 1)
- appeared as a supercritical Hopf bifurcation. In par-
ticular, LC- I occurred at well below the nominal flut-
ter dynamic pressure if the wing was excited by a
leading edge control surface. This limit cycle oscilla-
tion remained stable until almost 10% lower dynamic
pressure than nominal value where LCO vanished via
a saddle-node bifurcation. Quantitative bifurcation
diagram was thus obtained by the test and an empiri-
cal math model of single degree-of-freedom is pro-
posed. Furthermore, LC- I was realized by disengag-
ing a flutter control at a slightly higher dynamic pres-
sure than nominal value. As the dynamic pressure
was further decreased, this LC- I disappeared in a
supercritical Hopf-bifurcation. This paper analyzes
these new findings obtained in the tests by the nonlin-
ear dynamics framework.

Introduction

In" transonic region “flutter dynamic pressure
drops significantly, particularly for a high aspect ratio
wing, known as the transonic dip phenomena. Fur-
thermore, transonic flutter often takes the form of {imit
cycle oscillation (LCO). The fact that filutter in tran-
sonic region often takes a {imit cycle oscillation has
long been recognized and we have excellent review
monographs written by Cunningham™ and by Dow-
ell.? LCO is caused by two nonlineslity, aerodynam-
ics oriented and structures oriented. Even if confined
in aerodynamics nonlinearity, many researchers have
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treated the topics including Ueda and Dowell,®
Bendiksen” and others. Nakamichi succeeded in
realizing LCO by CFD analysis using Navier-Stokes
code®. Experimental observations of LCO have also
reported by many researchers.®®

Among these many research work, present re-
search aims at getting more deep insight into the
effect of dynamic pressure change on the characteris-
tics change of LCO, i. e., bifurcation nature. Thereis
few study experimentally realizes LCO and investi-
gates the effect of excitation upon the bifurcation
characteristics of LCO. In order to get better under-
standing of the limit cycle oscillation of the transonic
flutter, intending to provide experimental data for
validating the analytical expectation and to improve
the mathematical model for active flutter control, wind
tunnel tests were conducted. A wind tunnel model of a
high aspect ratio aeroelastic wing for active flutter
control study was entered flutter of LCO type in the
transonic wind tunnel at National Aerospace Labora-
tory, Japan. -

Nonlinear dynamics tell us two typical bifurca-
tion. Most well known is supercritical Hopf bifurcation
represented by van del Pol equation.®?

X-(e-¢,-x)k+x=0

Bifurcation diagram as the parameter & varies takes
the form as shown in Fig. 1(a).

(b) Subcritical

(a) Supercritical
Fig. 1 Hopf bifurcation
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Another complementary one is subcritical Hopf
bifurcation. lts equation is created from van del Pol
equation by destabilizing second power term and
introducing forth power term for stabilization, resulting
as,

¥-(e—¢&,—-x* 05X +x=0
Bifurcation diagram corresponding to this equation is
shown as in Fig.1(b). in practice, flutter of in a sub-
critical type should be more concerned since it is
violent in nature. Limit cycle flutter treated here is well
explained by these diagram particularly by the latter
one.

This paper analyzes these several experimental
findings by the nonlinear dynamics framework.

Basic Nonlinearity Observed
in Transonic Wind Tunne| Tests

High Aspect Ratio Wing Model

A flutter model which was entered in the wind
tunnel tests is shown in Fig. 2. It was refurbished from
a high aspect ratio wing in order to implement a lead-
ing edge- and a trailing edge- control surfaces acti-
vated. It has been used for active flutter control re-
segrch.
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Fig. 2 Aeroelastic model of high aspect ratio wing

Refurbishing items are to provide control sur-
faces with their activating motors, accelerometers on
the wing and a computer for a feedback purpose.
Trailing edge- and leading edge- control surfaces
were designed to place from 62.6% to 80.9% span
position with hinge lines at 73% and’ 15% chord posi-
tion, respectively. Since the volume of the geared
motors of the necessary torque are too large to be

accommodated within the original cross section of the
wing, it was decided to modify the section of the mid
wing from original supercritical wing to symmetrical
airfoil. To minimize the increase of rigidity, this portion
are divided into five parts, made by FRP, and each
section is attached to a spar by screws along the elas-
tic axis. -
In the present paper, the leading edge control
surface is used as a source of excitation and the wing
response is represented by an acceleration measured
by the sensor at the inward leading edge position (@y).

Flutter Stopper

2m by 2m section transonic wind tunnel at NAL has
a removable test section cart which installs a special
device of flutter stopper. A device forms a part of the
wind tunnel floor and has a triangular form. When it is
protruded into the flow, the dynamic pressure at the
test section drops suddenly by as much as 30% and
the flutter is stopped. This device is indispensable in
executing a wind tunnel flutter test to get an actual
flutter boundary. To date the model has experienced
as much as 159 times of flutter without any serious
damage. It enables to conduct such a wind tunnel test
as in the present research because it’s necessary to
get a lots of hard points of flutter.

Nominal Flutter as a Subcritical Hopf Bifurcation

The previous wind tunnel flutter tests confirmed
typical nonlinear characteristics of the transonic flutter
such as a transonic dip phenomena and LCO.!"""? Tg
get the flutter boundary, the wind tunnel total pressure
is set first and then Mach number is increased to a
prescribed value. Then keeping the Mach number
constant, we increase the tunnel pressure gradually
until the wing get flutter. The flutter stopper is acti-
vated then to stop the flutter and protect the model.
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Figure 3 shows a time chart for 60 seconds of
the wind tunnel test to get flutter. Mach number is 0.8.
Top chart is a wing response by an acceleration ay,
bottom is the trend of tunnel total pressure increase.
The middle is a trailing edge control surface move-
ment which shows successful recovering from flutter.
Chart shows that the tunnel pressure is increasing
gradually until flutter occurs. It can be seen that the
flutter occurred suddenly as a large amplitude LCO
(LC-1I). Taking a dynamic pressure as a bifurcation
parameter, this phenomena can be more better ex-
plained by subcritical Hopf bifurcation than supercriti-
cal one. We call this flutter as a nominal flutter since
we didn’t apply any intentional excitation. We there-
fore decided to conduct the wind tunnel test to make
clear whether it is possible to get flutter even at lower
dynamic pressure than nominal value by some kind of
excitation.

Qualitative Bifurcation Characteristics

Because LCO is a nonlinear phenomena, the
occurrence of LCO may depend on its initial condition.
In this respect the wind tunnel turbulence may have
effected the dynamic pressure where LCO started to
occur. The wind tunnel tests were therefore planned
and executed in 1996 to investigate the effect of exci-
tation on the occurrence of LCO. in what follows,
Mach number is confined to 0.8.

LCO Induced by LE Excitation

At this first wind tunnel test a limited number of
trials were carried out by changing the amplitude of
leading edge oscillation at subcritical dynamic pres-
sure. The main objective of this test is to find out
whether it is at all possible to get the wing into LCO by
excitation at lower dynamic pressure than the nominal
pressure and to know what is the lowest dynamic
pressure able to get LCO.

In the test a leading edge control surface was
used as a source of disturbance by oscillating sinusoi-
dally. The sequence of the oscillating frequency
change contains two parts: the frequency is first in-
creased continuously from 10Hz to 30Hz passing
through around 20Hz which is near LCO frequency,
followed by the second frequency sweep from 10Hz to
20Hz and stopped there. Wind tunnel test conditions
are as follows: Mach number M = 0.8, wing incidence
a =-0.2 deg and the offset angle of a leading edge
flap & ¢ =-2 deg (setting nose down position).

The test results are that even below the nominal
flutter dynamic pressure of 27.6 kPa it is really possi-
ble to get a large amplitude LCO (LC- II) if the magni-
tude of oscillation exceeds a certain level. The wing in
equilibrium state were able to jump up to LC-II by
leading edge excitation until the dynamic pressure
was reduced to 23.8kPa. It was a new finding and

another evidence that our transonic flutter can be
explained by subcritical Hopf bifurcation.
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Fig. 4 Wing response due to leading edge excitation

Figure 4 shows three typical responses around
a minimum dynamic pressure. At dynamic pressure
Pd=23.8 kPa and leading edge excitation amplitude of
3 deg, LCO is finally excited as shown in Fig. 4(b).
When the frequency was increased from 10 Hz to 30
Hz continuously, LCO once started to occur was sup-

pressed, however, when the frequency was stopped at
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20 Hz, LCO sustained. The other two time charts are
the cases when LLCO was not occurred, due to insuffi-
cient amplitude of 2 deg in Fig. 4(a) and due to {ower
dynamic pressure of 23.5 kPa in Fig. 4(c).

Saddle-Node Bifurcation

When we tried to decrease the tunnel pressure
during flutter at the minimum pressure, we obtained a
time response as shown in Fig. 5. It shows a time
history for 18 seconds in which are shown, from top to
the bottom, the wing response in acceleration, excita-
tion deflection of a leading edge surface, and a wind
tunnel total pressure. It is shown that when the tunne!
pressure is decreased a little bit from 81 kPa, the
minimum pressure for LCO, to around 80.9 kPa, the
flutter suddenly stabilized. This phenomena can be
explained as a saddle node bifurcation.

Qualitative Bifurcation Diagram

These several bifurcation can be summarized in
a single qualitative bifurcation diagram as shown in
Fig. 6.7%" In the figure, dynamic pressure Pd is taken
as a control parameter and the angle of attack of the
wing, ‘alpha’, is employed as representing the wing
response. The unstable limit cycle is connected to LC-
I at a saddle-node bifurcation point. The unstable
limit cycie works as a separatrix which separates the
attraction basin of the two different solutions. If the
wind tunnel noise level or any other disturbance such
as a leading edge excitation is enough big to force the
system to the other side of the separatrix then flutter
of LC-1 happens.

'S

Saddle-node Limit Cycle 11

bifurcation

Subcritical

Unstable fimit Hopf-bifurcation

\ Equilibgusm --=------"""" -

poitils (stable)

Fig. 6 Qualitative structure of bifurcation diagram

Equilibrium points
(unstable)

Small Amplitude LCO by Control Disengaged

A more complex dynamics appeared around
nominal dynamic pressure accompanied with active
control of flutter using a trailing edge control surface.
When control was switched off at py=28.3kPa, a little

bit above the nominal flutter dynamic pressure of

pg=27.6kPa, a small amplitude LC- I appeared. LC-

I disappeared as in a supercritical Hopf bifurcation
way such as shown in Fig. 7 where the dynamic pres-
sure was gradually decreased lower than the nominal
value. It should be noted that this phenomena does
not always happen and its reason is still open.™ The .
supercritical Hopf bifurcation cannot exist with the
subcritical Hopf bifurcation at the same time, one
possibility is that wing incidence change could lead
such a change between the former and the latter. If
the supercritical Hopf bifurcation is included around
the nominal flutter dynamic pressure ran%e bifurca-

tion diagram may take the form of Fig. 8.!
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Follow-on Test of L.E. Excitation

Test procedure and the results
Intending to gain an insight into the bifurcation
characteristics for transonic LCO of the wing quantita-




Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

tively, the follow-on tests were planed and executed.
The test was conducted to determine the LCO (LC-1I)
boundary in terms of amplitude of a leading edge
excitation at different dynamic pressure. Test condi-
tions are the same as before except the wing inci-
dence of a= +0.75deg. This time oscillation fre-
quency of the leading edge control surface was kept
constant at the LCO frequency of 21.5Hz. Test was
carried out as follows: first apply the leading edge
oscillation and observe whether the wing gets into
LCO or not. If wing state can be seen to reach at
steady state, LCO or equilibrium, stop excitation. The
final step size of the amplitude at the stability bound-
ary were made finer as 0.125deg. Nominal fiutter
dynamic pressure at this test was a little bit changed to
27.9kPa, mainly due to the change of wing incidence
from a=-0.2deg to +0.75deg, and partly due to the
work done for maintenance of the actuating mecha-
nism inside the wing.
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Fig. 8 LCO boundary caused by leading
edge excitation

~ The test results are shown in Fig. 9 which shows
stable or LCO for each test point in flap amplitude and
dynamic pressure map. Stability boundary between
stable- and LCO- points are delineated in the figure; if
the excitation amplitude is below the boundary, re-
sponse of the wing was damped out, but if above,
excitation jumped the wing into LCO. Fig. 10 shows
these situation by two adjacent test cases, above and
below the boundary, at dynamic pressure
Pd=25.04kPa as an example. In these two figures,
first channel is the flap deflection and the second
channel is the acceleration obtained in the tests. In Fig.
10 (a) even when a leading edge flap excited the wing
with 3.0deg amplitude, LCO is not excited, while as in
Fig. 10 (b), only 0.125deg higher amplitude excitation

can put the wing into LCO and it continues to oscillate
after removal of excitation. The boundary is changed
abruptly at around 25.25kPa and the system is glob-

ally in equilibrium below 25kPa dynamic pressure.
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Phase Diagram and Quantitative Bifurcation Diagram

The test data are processed to depict phase
diagram. The acceleration signal is numerically inte-
grated twice to get velocity and deflection. In Fig. 10

- velocity and deflection obtained by numerical integra= -

tion of the second channel of acceleration are shown
at third and forth channel. From these data phase
diagram can be depicted as shown in Fig. 11 where
the response of 3.0deg excitation goes down to origin
as in Fig. 11 (a), while the response of 3.125deg goes
diverging to LCO as in Fig. 11 (b).

Combining these two phase diagram we can
identify the boundary which separates the branches
going up to LCO and going down to equilibrium. We
can define this boundary as an unstable limit cycle or -
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separatrix at this particular dynamic pressure. Proc-
essing the other four pairs of data at different dynamic
pressure in Fig. 9, we can obtain unstable limit cycle
data and can plot them in the bifurcation diagram as
*X’mark in Fig.12. Figure 12 is a quantitative expres-
sion of a bifurcation diagram which includes a
suberitical Hopf bifurcation, a saddle-node bifurcation,
a large amplitude LCO, and a stable equilibrium along

with an unstable limit cycle.
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Discussion on Math Modeling

Now that the various characteristics of transonic
LCO of a high aspect ratio wing model can be ex-
pressed by a single quantitative bifurcation diagram: a
subcritical Hopf bifurcation at the nominal dynamic
pressure, a saddle node bifurcation at the lowest dy-
namic pressure, and an unstable limit cycle, we can
propose a mathematical model which can express
these nonlinear phenomena. Here we apply a phe- -
nomenological approach, rather than theoretical or
computational approach, to obtain empirical math
model in a similar but different way as Dowell ef af'™®
proposed for modeling nonlinear oscillator of bluff
body aeroelasticity. .

For constructing the mathematical model, the
following test results should be taken into account;

(1) At smallest dynamic pressure of LCO, LCO be-
haves as a saddle-node bifurcation and at the
nominal dynamic pressure LCO changes as sub-
critical Hopf bifurcation.

(2) Phase diagram of LCO is almost circle and LCO
can be assumed as a simple harmonic oscillation.

(3) The mode of LCO of this wing is almost a sin-
gle-degree-of-freedom. An oscillating pattern of
an outer wing, presented by a quadrilateral of four
points where the accelerometers are implemented
shows that the outer wing is osciilating as “wash-
out” way. Wash-out tendency and a single de-
gree-of-freedom mode at the transonic dip is co-
incident with the explanation given bg/ Isogai who
numerically explored this tendency."®

Empirical Math Model of Single DOF

Single-degree-of-freedom nature-of the present
LCO can simplify a model equationi. Starting from the
similar mathematical model for the system in LCO
condition as Cunnigham‘”, a proposed mathematical
model can be expressed as,

MG +2Mwyg + Malq = f,(q) 0!
where M. w,,{, are the generalized mass, LCO
frequency, and damping, respectively, ¢ is a

generalized coordinate representing the wing LCO
response which is in this case a deflection of the wing
fa (9) isa
nonlinear aerodynamic force which drives the wing

into limit cycle flutter.
Since bifurcation characteristics is of subcritical

type, f,(q)should have the destabilizing nonlinear

term ¢°¢ with higher order nonlinear term like ¢*4to

damp the large amplitude oscillation'? besides a
linear stabilizing term. Therefore £, (g) may have the

following structure:
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fa@ = PS(a+bg® —cq*)g /U @
where P, =(1/2)pU? is a dynamic pressure. In eq.

(2), the second and third term together may present
the loss of aerodynamic efficiency of the first term due
to some sort of flow separation caused by a shock or
at the middle part of the wing. Substituting eq.(2) to
eq.(1), we get

P, .S
d P
Golagoatdtd 04d

MUcoO Pdf

P, .S

d P

- S —d_ (qu—cq4>co0q+a)02q:0 3)
MUa)O Pdf

where Pdf is a nominal flutter dynamic pressure to be

featured subcritical Hopf bifurcation. With the unit of
time and length such as,

1
Time: e

29
1 Pd"fS
Vv T MU,
we. define the non-dimensional time 7 and deflection
g as,

Length:

7=bvg

Equation (3) is non-dimensionalized with these vari-
ables as,

P P
A e R APl 1 R
df df
(4a)
a2 () d() c
where ()"=——T, () =—-, and,u3 =
dr dr b v

Equation (4a) is further simplified introducing addi-
tional parameters such as

av aS aS

m=p, = By iy =av=
Pay © MUwy T MUa  df

- c
, and k3 =—— along with an artificial parameter

b2v
Hy =1,

— H 2 [ UPO N PO
q" - (/ll‘ﬂf)'*'/lz"‘l‘q —“H3—4q g
Hr Hr
. (4b)
where only i, is a function of dynamic pressure Pd .
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Fig. 14 Empirical mathematical model
for transonic LCO flutter
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Numerical simulation of the equation

The nonlinear equation (4b) can be numerically
simulated using Matlab/Simulink software. Intending
to place the saddie-node at around 10% lower point to
subcritical Hopf bifurcation, the values of the parame-
ters in eq. (4b),‘u2 =1, Hy= 1, along with

# =10 are chosen and the equation was analyzed

numerically with K, as a control parameter. Since the

equation is nonlinear, the solution depends on initial
conditions. The dependency of the initial conditions
determine the boundary, i.e., unstable limit cycle,
which separates the solution going to LCO and the
one going to a stable equilibrium. For example at

M= 0.95, the initial condition, (qO’ q, ): (0.49, 0),
yields the stable solution, while the initial condition,
(‘70’ 90 )=(0.50, 0), yields the LCO solution as

shown in Fig. 13 as a phase diagram. The result of the
simulation can be summarized in Fig. 14 where a
stable equilibrium ends up at a subcritical Hopf bifur-
cation, connected with a saddle-node bifurcation to a
large amplitude LCO. These fundamental structures
well represent the quantitative bifurcation of Fig. 12.

Concluding Remarks

Several nonlinear phenomena were found dur-
ing series of wind tunnet tests in the transonic region
for a high aspect ratio wing model: at nominal dy-
namic pressure without any intentional excitation,
flutter emerged as a large amplitude limit cycle oscil-
lation in a subcritical Hopf bifurcation way. Using a
leading edge surface excitation, LCO appeared until
as lower as 10% below the nominal flutter dynamic
pressure. At a smallest dynamic pressure, LCO
jumped down to a stable equilibrium via a saddle-

node bifurcation. Between these dynamic pressure,

unstable limit cycle which connects the saddle-node
bifurcation and subcritical Hopf bifurcation can be
identified as a boundary separating LCO and a stable
equilibrium region. Quantitative bifurcation diagram
was thus obtained by the test and an empirical math
model of single degree-of-freedom is proposed. An-
other possibility of supercritical Hopf bifurcation still
exists since a small amplitude LCO appeared just
above a nominal flutter dynamic pressure when an
active flutter control was turned off and disappeared
continuously to a stable equilibrium as the dynamic
pressure was decreased.
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