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Abstract

The purpose of this paper is to optimize the placement of n pairs of piezoelectric sensors and actuators with a
view to reducing vibration of a composite beam. Using the Reissner-Mindlin model to describe beam behaviour,
both sensor and actuator are considered as layers of composite material. The position and length of each sensor-
actuator pair is determined by applying genetic algorithms to maximize a function including the product of
damping ratio by natural frequency in each mode. Some numerical simulations, which through comparison with
experimental results show the importance of an accurate damping model due to the layer of adhesive and to

piezoelectric patches, complete the work.

Introduction

Intelligent structures have received considerable at-
tention in recent years. Through a highly distributed
network of sensors and actuators, such structures allow
the control of effects produced by an external distur-
bance by applying appropriate forces. As the num-
ber of these actuators in an intelligent structure is
quite high, it is desirable that they be compact and
lightweight. In addition, they should cause no sub-
stantial change in the static and dynamic behaviour of
the structure to which they are coupled. Piezoelectric
materials can be used for this purpose.

Control of flexible structures as undertaken by Craw-
ley (1] and Bailey and Hubbard [2] is based on the po-
tential of piezoelectric actuators for inducing structural
deformation. It is evident that the success of the con-
trol is related to the position of the sensors and actu-
ators [3]. A number of investigations have tackled the
problem of determining optimum placement and size
of piezoelectric patches so as to minimize the amount
of control 4], whilst others have solved the problem by
considering the grammian of controllability or closed-
loop eigenvalues [5].

As an alternative to classic optimization techniques,
which have the drawback of stopping short of local op-

timum points, advanced techniques such as genetic al- -

gorithms [6] and simulated annealing [7] have emerged
lately. In [8] genetic algorithms are used for placement
and determination of optimum piezoelectric patch size
considering amplitude of the desired mode as target
function. '

The majority of works on both beams and plates
use simplified models based on Kirchhof’s assumptions.
This paper describes structural behaviour using a math-
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ematical model which, taking into account also shear
deformation, equally applies to structures whose thick-
ness is not negligible relative to the other dimensions.
Moreover, the mathematical model also includes damp-
ing due to both adhesive layer and piezoelectric patch.

The aim is to determine the optimum placement and
size of piezoelectric patches placed on a composite beam.
The structure has been discretized using the finite ele-
ment method, whereas genetic algorithms were used for
placement and sizing of piezoelectric patches so as to
obtain maximum attenuation of vibration on the struc-
ture. Numerical examples are used to show the effect
of considering a target function incorporating both the
product of damping ratio times natural frequency and
the angle of fiber orientation of the composite material.

Mathematical model

To determine the dynamic response of a composite
plate with actuator and sensor inside the structure or
glued to the surface, a calculation program was written
on the basis of the procedure described in [9]. What
follows is a brief outline of the main steps for producing
a mechanical and electrical model of the plate with
attached piezoelectrics. -

Equations for the structural model

The displacement model used is that of the Reissner-
Mindlin theory which considers both flexural and shear
deformations. Displacement (u,v,w) of a coordinate
point (z,y, z) is given by:

u(m’sz) = uo(m: y) + Z(}sz,
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v(:c,y,z) = vo(xay) +z¢yz:
w(z,y,2) = wo(m» Y)s (1)
where u°, v* and w? are the displacements of a point

on the reference surface of the plate, whereas ¢, and
¢y represent rotations normal to the reference surface
obtained by superimposition of rotations ¢,, and ¢,
due to deflection only and to rotations w’, and wf’y due
to shear:

(4]

ez = Prz — W g,
— 0

¢yz = Pyz W,

@)

The stress-strain equation is obtained assuming kth
layer to be homogeneous, orthotropous and linearly
elastic. With fiber orientation of kth layer rotated
through angle @ relative to = axis of global reference
system, state equations become [9] {10]:
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[Colx = [To)[Cli[To)” (3)
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The deformations-displacements relationship makes use-
of von Karman’s approximation [9):
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Electromechanical coupling equations

In order to use a piezoelectric material as sensor or
actuator it is possible to take advantage of two types of
effects. The first, known as converse effect, associates
the stress imposed on a piezoelectric material with me-
chanical loads and strains according to the following
relationship:

{0}k = [Cla({e}x — [D];{€}x) (10)

where [C] is the matrix of Hooke’s law and [D] is the
matrix of piezoelectric deformation coefficients:

0 0 0 0 Dis
D = 0 0 0 Dy O
D31 D3z Dzg 0 0

whereas the electric field vector is:

{g}k = {gl) ng 83}16 = {0, 0, _uk,a}k (11)
The second type, known as the direct piezoelectric ef-
fect, where mechanical loading applied to a piezoelec-

tric component generates electric charges or induced
stress {Sg }:

{8k} = [Zxl{&} + [DIF {o}x

where the permissivity matrix is assumed to be diago-
nal:

(12)

(2], = diagonal{Z;;, Zs3, Z33}

Electric field model

Electric field is expressed at individual layer level
and is assumed to feature a linear distribution along
the layer. Therefore a quadratic stress is considered,
as shown in Fig. 1, and of type [9]:

Ue(z,y,2) = Fille) Ug(z,y) + Fo(Ce) Ui (z, v)+
5o(G) Up (=, y)
U = {BNT{XE}

(13)
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INDUCED STRESS FIELD

p. Electric Field
Linear along 2,

Figure 1: Induced stress by linear variation along z of
the electric field in the piezo-layer

where U}, Uf and UL represent stress at top, center and
bottom of the layer. Interpolation functions are given
in [9].

Displacement equation for laminated plate

For a multilayered plate of volume V subjected to
mechanical and electrical loading by piezoelectric ac-
tuators, the principle of virtual works becomes:

/V ({6¥2 {0}, + {6EYT{S})AV = 6L, +6Lin (14)

where [, {€}f {o}xdV is the part of virtual work due to
mechanical deformation and to the stresses generated
by the converse effect in the piezo-layer, [, {6£}{{S}rdV
is the part of virtual work due to the electric field in the
piezo-layer through direct effect, 6L, = f,,{6u}f{P}rdV
is the virtual work due to external mechanical loading
{P} and 6Lin = — [, pr{6u}l{ii}rdV is the virtual
work due to inertia forces.

Finite element discretization

By substituting equations (1), (2), (3), (7), (10) and
(12) in (14) we obtain an equation which will depend
on variables {Xy} and {X,}, which are the vectors
of electrical and mechanical degrees of freedom of the
structure respectively. If the structure is discretized
in finite elements, the displacement vector may be ex- .
pressed as a function of the vector for the degrees of
freedom of the modes [11]:

{Xu} = [Nul{Qu};  {Xulr = [Nul{Qub:  (15)

where [N, ] and [Ny] are matrices whose elements are
the shape functions for mechanical and electrical dis-
placements respectively. After discretization, equation
(14) becomes: '

{6Qu} [KmmH{Qu} + {6Qu} [Kme{Qu}i+

Bottom surface Upper surface

at ground at ground
Actuator ur =o UF fixed
layer UF free UE free
utk fixed L{t" =
Sensor U =0 T UF free
layer U free Uk free
UF free ur =0

Table 1: Electrical boundary condition.

{6QU}£ [Kcm]{gu} + {5Qu}c£[Kee]{Qu}k =
-{6Qu}T [M]{Qu} + {6Qu}T{Pm} (16)

where the mass matrices are those given in [9]. Stiffness
matrices and mechanical-electric coupling matrices for
piezo-layers of sensor and actuator are obtained by ap-
plying electrical boundary conditions as given in Table
1.

The displacement equations for a multilayered plate
with piezo-layers as actuators and sensors, take up the
following coupled shape [9):

[Kmm}{Qu} + [Kme{Qu} + [M{Qu}
[Ken{Qu} + [Kee{Qu}

{Pn}+{P2.}
{PZ (17)

If we suppress the vector for electrical degrees of free-

dom {Qu}, the resulting equations are formulated in
terms of displacement {Q,}:

(EN{Qu} + [MH{Qu} = {Pn} +{P.}  (18)
where
[K] - [Kmm] - [Kme][Kee]_l[Kem]
{P} = {Pn.}—[Emel[Kee] {PA} (19)

Equations (19) demonstrate that piezoeiectric patches
modify stiffness matrices and external load inputs. The
equation derived from (17),

{Qu} = [Kee]_l{Peé} - [Kee]_l[Kem]{Qu} (20)

permits post-processing calculation of stresses gener-
ated at sensors’ terminals.

Modal damping of the plate

The analysis of composite plate damping is carried
out using the specific damping capacity (SDC) concept
outlined in [10]:

AV _ {Qu)7[KaH{Qu}
T " {QuI[KI{Qu}

where AU is the energy dissipated during a stress cycle,
U is the maximum deformation energy during a stress

p= (21)
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cycle [10], [K] is the stiffness matrix given in (19), [K4]
is the ‘damped’ stiffness matrix [10] [12] given by:

(K4 = /V [B]7 (C)(BlaV (22)

The damping factor for the ith mode, of which {¢;} is
its modeshape, may be obtained as:

1 {7 [Kal{4:}
2r {$:}T[K{¢:}

The damping values thus calculated are introduced in
the mode formulation of the displacement equation:

(M7} + [CHa} + [BHn} = {F}
obtained from (18) following conversion to modal co-

ordinates:
{Qu(®)} = [2{n(t)}

Converting equation (24) to state space form we can
write:

26 = (23)

(24)

(25)

{2} =[Alaf{z}+ [Blaf{uc}

.. (26)
{5} = [Cla{e} + [Dla{uc}
:.vhere'
@ = {3 }
e = | gy e
Bla = [[M 0
{s} = {g%} (27)
Control input {u.} with constant feedback gain:
{uc} = -G {y} (28)

permits, for vibration control purposes, an increase in
structure damping using piezoelectric sensors and ac-
tuators located as shown in Fig. 2, through feedback

at {n}.

Application of genetic algorithms

Genetic algorithms are optimization techniques de-
rived from the natural selection process and from the
evolution theory originally studied by Charles Darwin.

The evolution theory is applied, for function opti-
mization, by associating first of all the concept of in-
dividual with a potential solution of the function to
be optimized, and secondly by assessing the extent to
which the individual adapts to the environment using
the value of the target function f(-).

r4 voltage on actuator

Actuator

X
l Sensor

voltage from sensor -G

Figure 2: Beam with piezoelectric sensor and/or actu-
ator

Thus, thanks to current calculation capability which
permits evaluating very quickly the ‘performance’ of
many individuals, i.e. calculating the value of the tar-
get function for a given array of potential solutions,
we may apply the theory of the survival of the fittest
individual of the population in question. The fittest
will be the one who best adapts to the environment,
and therefore whose target function is at a maximum.

To reach the optimum value for the problem under
consideration, genetic algorithms were developed so as
to proceed during optimization in a way similar to the
natural evolution of the species - including the funda-
mental concepts of reproduction through exchange of
chromosomes, random mutation of genes and natural
selection.

In order to apply the theory of Darwin to an op-
timization procedure, the initial population chosen at
random evolves over several generations producing new
individuals better adapted to the environment. The
degree of adaptation is assessed through the target
function formulated on the basis of the specific opti-
mization problem in hand. Moreover, depending on
how reproduction, selection and mutation occur, based
as they are on the draw of numbers at random, opti-
mization techniques deriving from genetic algorithms
are such that to stop the optimization process when a
local maximum is reached.

When an initial population has been established, the
next step is reproduction. The suitability of each in-
dividual to be chosen as ‘parent’ for the purpose of
generating the next population is assessed by means of
the target function, after applying selection criteria bi-

" ased towards the probability of hitting on individuals = =~

with the highest degree of adaptability.

In natural evolution, genetic characteristics of off-
spring are derived from those of both parents. With
genetic algorithms the crossover process ensures that
genetic features of parents are passed on to their off-
spring. This occurs essentially by breaking and ex-
changing the genetic information of the two parents,
so that two individuals generate two offspring. Thus,
population size remains unchanged and becomes a spe-
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cific parameter of the optimization procedure.

To prevent the entire population from converging to-
wards local solutions of the optimization problem, it is
introduced the concept of mutation which brings about
the random variation of some genetic information on
individuals within the population.

The intelligent structure design was optimized as re-
gards the position and size of pairs of piezoelectric sen-
sors and actuators using genetic algorithms. Compos-
ite fiber orientation was added as an added problem
variable.

Placement and size optimization for n pairs of piezo-
electric patches on the beam considered using genetic
algorithms, was performed through random generation
of n placement-size pairs, representing the generic in-
dividual to which the optimization procedure is aimed.
Based on positions and sizes thus generated, each time
a mesh must be rebuilt for structure discretization, also
applying the procedure outlined in the previous section
to assess damping and stiffness values.

Taking into account the significance of damping for
vibration control - the higher the damping the better
the closed loop system performance and the lower the
need for control - we have used a target function to be
maximized corresponding to the damping of the system
illustrated in Fig. 2. Given the contribution of each
mode, for the ith individual it was assumed:

N
f{p=}i {l}i) = Z 2¢€j,iwji (29)

where c; is the weight factor for each mode, {p,; }; and
{Iz}: refer to centerline position and length of each
sensor-actuator pair respectively.

Numerical results

To validate the mathematical model, we evaluated
the static deflection of a bimorph beam as shown in
Fig. 3. A comparison between results obtained with
our model and thosé from the literature [12] [13] is
fllustrated in Fig. 4. Evidence confirms results are in
good agreement.

Subsequent numerical examples concern a carbon-
epoxy cantilever laminated composite beam and piezo-
ceramic sensors and actuators in stacking sequence

[64/02/90,],

Initially, we assume 6 equal to 0°, 15°, 30°, 45°,
60°, 75°, 90°, beam size being 230 x 20 x 2 mm3, and
piezoceramics 50 x 20x 0.5 mm3. Mechanical properties

of beam, piezoelectric ceramics and adhesive layer can
be found in {14].

¥
In Figures 5 and 6 damping ratio and damping term
2¢w of composite beam of characteristics as mentioned

o

10.5 mm
100 mm

X

5 mm

Figure 3: Piezoelectric polymeric PVDF bimorph
beam
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Figure 4: Deflection of the piezoelectric PVDF bi-
morph beam with input voltage of 1 V

previously and obtained with this matematical model,
are compared with those obtained by experimental tests
[14]. The above diagrams confirm the correctness of
the mathematical model adopted herein, even with
changing fiber orientation. Moreover, the figures also
include the term ‘present model *’ with both adhesive
layers and piezoceramics which are not considered by
the mathematical model. Results indicate that damp-
ing by adhesive layer and piezoelectric sensors and ac-
tuators plays an important role in the dynamics of the
system as a whole and must be taken into account dur-
ing system modelling.

Simulations of optimum placement using the genetic

. algorithm were carried out on the same composite beam. --

used for the previous example, including damping of
both the adhesive layer and the piezoelectric patch, 5
pairs of piezoelectric sensors and actuators, with the
condition that minimum size should not be under 0.01
m. A number of simulations were meant to determine
optimum sensor and actuator placement and size con-
sidering first the damping of the first five modes sepa-
rately. Subsequently, several other modes were consid-
ered to establish optimum placements for a structure
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Figure 5: Damping for a composite beam, prediction
and measurement
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Figure 6: Damping for a composite beam, prediction
and measurement

r

stressed in a wider frequency range.

Results obtained for each individual mode are sum-
marized in Table 2 which shows position Dz,i as the dis-
tance of average point of ith piezoelectric patch from
the point of restraint, and in Table 3 which shows
length I ; and optimum value of §. Similarly, ta-
bles 4 and 5 give results obtained considering the com-
bined effect of the first 4-5 beam modes (with minimum
length of 0.005 m).

Figures 7 through 10 show placement of sensor-actuator

pairs and the curve of the cost function for the fittest
individual of the population considering the effect of
the first four beam modes separately. Figures 11 and
12 illustrate the development of target function taking
into account the combined effect of the first four and
of the first five natural modes respectively. Moreover,
in this last case the number of sensor-actuator pairs
considered were 4 and 5 respectively.

Conclusions

To control vibration of a composite beam the authors
determined the optimum placement and size of piezo-
electric sensor and actuator pairs, and fiber orientation
of one of the layers of the laminated composite beam.
The finite element method was used to discretize the
Reissner-Mindlin model of a multilayered plate featur-
ing piezoelectric layers acting as sensors or actuators.

Comparison of simulations with experimental results
available from the literature prove the effectiveness of
the model based on plates incorporating piezoelectric
layers. Results obtained highlight the importance of
taking into account damping of piegoelectrics and of
the adhesive layer in connection with dynamic analysis
of a structure.

The use of an optimization model required the de- ~
velopment of a procedure for automatic mesh genera-
tion able to meet mechanical and electrical boundary
conditions. The optimization problem was solved by
adopting a target function which includes damping in
the form of the product of damping ratio by natural
frequency for a given number of modes. Finally, the
method outlined herein may be extended by introduc-
ing factors ¢; from (29) allowing greater emphasis to
be placed only on some modes of the structure without
suppressing others.
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Mode no.  ps ;1 Dz,2 Ps,3 Dz,4 Dz,5

1 6.0085 0.1017 0.1117 0.1217 0.1322 :
2 0.0079 0.0181 0.1765 0.1865 0.1965
3 0.0072 0.1096 0.1199 0.1305 0.1459
4 0.0129 0.0742 0.0847 0.1443 0.1547

Table 2: Centerline position [m] of each piezoelectric patch from the clamped end - results for each individual -
mode

Mode no. I::,l lz’z lz,3 1114 lz,g, 7
1 0.0170 0.0100 0.0100 0.0100 0.0100 22°
2 0.0102 0.0100 0.0100 0.0100 0.0100 19°
3 0.0135 0.0101 0.0100 0.0101 0.0100 22°
4 0.0100 0.0100 0.0100 0.0100 0.0100 20°

’Tablc.s 3: Length [m] of each piezoelectric patch and optimal value of 6 [deg] - results for each individual mode

Mode no.  pg 1 Dz,2 Pz,3 Pz,4 Dz,5
1,2,34 0.0050 0.0181 0.0251 0.0874 -
1,2,3,4,5 0.0179 0.0289 0.0631 0.1541 0.1657

Table 4: Centerline position [m] of each piezoelectric patch from the clamped end - combined effect of first 4/5
modes

Mode no. Iz g2 lz3 [ Izs é
1,2,3,4 0.0086 0.0050 0.0050 0.0050 - 22°
1,2,3,4,5 0.0058 0.0113 0.0099 0.0056 0.0109 19°

Table 5: Length [m] of each piezoelectric patch and optimal value of 6 [deg] - combined effect of first 4/5 modes

1




	00001.PDF.pdf
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009

