Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

A98-31557

A TOOLSET FOR THE DESIGN OF AUTONOMOUS UAV SYSTEMS

F Valentinis
Wackett Aerospace Centre

J Kneen

W A Belton
Wackett Aerospace Centre

C Bil

Dept. of Computer Systems Engineering Wackett Aerospace Centre

Royal Melbourne Institute of Technology
GPO Box 2476V, Mebourne, Vic 3001, AUSTRALIA

Abstract

Designers face many unique challenges in the development of autonomous UAV systems, many of which are not
catered for using conventional aircraft design methodologies and tools. This paper presents a toolset, called “Wackett
Aerospace Centre Uav Design Toolset” (WACUT), which provides the UAV designer with a means to evaluate and
optimise a UAV system design. The toolset provides an indication of the impact of changing one of a full range of
system variables from aircraft configuration and geometry through to autonomous control structure. It has proven
invaluable in the design phase of an autonomous UAV system currently under development by the Sir Lawrence
Wackett Aerospace Centre, with support from the Commonwealth Scientific and Industrial Research Organisation
(CSIRO). The proposed flight vehicle system is being targeted specifically to atmospheric research applications.

. Introduction

Atmospheric research applications present autonomous
UAV system designers with a variety of challenges. Most
noteworthy is the requirement for the vehicle to make
course corrections based on results from real time analy-
sis of atmospheric data, and to do so for long periods of
time. This data may consist of wind direction and static
pressure as well as results of on line gas sample analysis
results.

With support from the CSIRO Division of Atmospheric
Research, the Wackett Aerospace Centre at RMIT is de-
veloping an autonomous UAV System for long endurance
atmospheric research applications. Various airframe and
system configurations have been considered (8), Ay A
toolset has been developed to aid in this design process.

This paper discusses some of the aspects which differen-
tiate autonomous UAV system design from the design of
conventional aircraft or even remotely piloted UAVs. It

describes a design toolset which takes these aspects into

account, greatly aiding the overall design process. Fi-
nally, it presents some examples showing how the toolset
can be used in the design of a UAV used in atmospheric
research applications.

A particular focus of the paper is the UAV design and
optimisation environment WACUT, which couples a fault
tolerant control systems implementation platform, known
as Coral, with a non linear six degree of freedom flight
simulator. The flight simulator relies on a set of char-
acteristics determined by a flexible parameter estimation

‘Copyright © 1998 by ICAS and ATAA. All rights reserved

code suitable for use with low Reynolds number flight ve-
hicles. Using this system, changes can quickly be made
to either the airframe or controller, then the resulting de-
sign can be fed into a full mission simulation, from which
a set of performance measures can be derived.

Building an Intelligent, Autonomous Vehicle System.

Fully autonomous operation places unique requirements
on the operation of a flight vehicle. Fault tolerance in
particular is of paramount importance even in missions
involving high degrees of uncertainty. These require-
ments are particularly evident in the case of vehicles de-
signed for autonomous atmospheric research applications,
where long endurance in often extremely hazardous envi-
ronments is a critical requirement.

These unique requirements significantly complicate the
design and implementation of all aspects of fully au-
tonomous UAVs, from the airframe through to avionics
systems. As proposed mission complexity increases, so
too inevitably comes a significant increase in the com-
plexity of a given vehicle's control regime, and the im-
portance of matching an airframe design to the mission
becomes more critical.

Airframe Design

The challenge of designing and optimising airframes in-
tended for fully autonomous vehicle systems can be quite
different to the problem of designing full sized manned

21st ICAS Congress
13-18 September 1998
Melbourne, Australia

1CAS-98-3,7,3

Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

aircraft. The first and foremost difference comes from
the absence of human factors in the vehicle.

While this absence is in many ways advantageous, as it
means that either more payload or fuel carrying capacity
can be added to the vehicle, in general it means that
the design will be considerably smaller than an average
passenger carrying airframe.

For this reason the majority of UAVs operate in a rather
low range of Reynolds numbers (from as low as 250,000
to 2,000,000). The vast majority of sizing and design
analysis tools are designed for manned aircraft, and do not
produce accurate results when presented with UAV design
problems. This in itself leads to difficulties in both the
design, and more particularly, the design analysis process.

The solution to this dilemma is to use more advanced
analysis techniques for design validation such as CFD
codes (9), and wind tunnel models ®) _ but neither of
these provide rapid feedback to the designer indicating
the effects of changing critical design variables - an im-
perative requirement in the UAV airframe optimisation
process.

A solution to this problem, implemented as an intrinsic
part of the WACUT tooliset, was to develop a flexible pa-
rameter estimation code based on an extended, nonlinear
lifting line scheme scheme. The code produces results for
all common UAV configurations, and supports a concise
input format. The code, called the Aerodynamic Analy-
sis Program (AAP), provides sufficient accuracy for use
in the airframe optimisation process and returns prompt
results.

A secondary consideration in the autonomous UAV air-
frame design process comes about from the fact that
the vehicle is constantly under the control of an auto-
matic control system. Variation of control parameters,
and especially modification to higher level control struc-
tures will dramatically affect the performance of the ve-
hicle in meeting mission objectives.

A particular example of this is the incorporation of ther-
malling algorithms into a control system, enabling the

vehicle to reduce throttle and glide when possible, and -

thus increase range. When such techniques are used, a
critical question becomes how much do such techniques
increase range, and exactly how do changes in parame-
ters such as aspect ratio affect total range when such a
technique is used.

The close coupling of the automatic control system de-
sign process to the airframe design process is beneficial,
and therefore support of this from any autonomous UAV
design analysis toolset is very useful.

Avionic Systems Design

The requirement for UAVs to operate autonomously in
complex and harsh environments inevitably leads to a re-
quirement for quite large and complex avionic systems for
which implementation can be quite difficult, particularly
in a redundant, fault tolerant fashion. Reducing com-
plexity at all levels in the avionic systems design process
is therefore a goal worth highlighting in the case of fully
autonomous UAV systems.

This requirement suggests that the development of tools
and systems which simplify the implementation process
at all levels is highly desirable. The process of developing
any modern digital flight control system can be broken
into a hierarchy of systems, each of which have associated
with them unique challenges.

At the top level of the hierarchy sits the controller soft-
ware, which generally runs under the control of a software
runtime environment. This environment in turn is under
the control of an operating system, which is executed on
a redundant computer platform.

The process of designing autonomous flight controls in-
volves numerous experts, the expertise of which must be
focused at different levels of this hierarchy. A controls
engineer, for example will develop a controller, using any
of many techniques available, then pass the results of his
work, in the form of a specification to a software engi-
neer. The given specification is then implemented using
a particular programming language, which is most often
Ada 95 in the case of air vehicle systems.

This software is run via a runtime executive which han-
dles such tasks as redundant instantiation, and this in
turn relies on the operating system which in turn requires
the electronics computer hardware t6 be running at an
appropriate level of performance. These latter lower level
systems are also quite complex, and are generally devel-
oped by separate teams.

Given that controllers are normally defined in terms of

flow models described by block diagrams, the process of

converting a controller specification into a program can

often be laborious and unintuitive for the uninitiated. The

main reason for this stems from the fact that modern

structured languages such as Ada are designed for imple-"
menting procedural algorithms, and not necessarily the

connectionist flow oriented models represented by block

diagrams containing mathematica! relationships.

This incompatibility in approach leads to the unneces-
sary difficulty of performing a specification conversion to
match the programming approach of interest. For a com-
plex smart controller designed to handle missions involv-
ing high degrees of uncertainty, this can lead to errors
being introduced into the design process.

Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

A key tool in the WACUT toolkit, called Coral, overcomes
this incompatibility in approach via a programming lan-
guage, which follows the block oriented paradigm used
in controls design. The Coral compiler produces a pcode
binary which can be run on any platform supporting the
Coral runtime executive, ie a PC, network of workstations,
or dedicated avionics hardware. When run on a parallel
processing system, Coral also automates the process of
redundantly implementing a given system, further reduc-
ing the work required to implement an avionic system.

A further difficulty which arises in the development of
avionic systems relates to the basic issue of processor
compatibility. In the past, the use of processors sup-
porting instruction sets defined by standards such mil-
std-1750 guaranteed that a single software development
toolset could be used in a single avionics systems devel-
opment project.

In order to reduce cost, modern civil systems, such as the
Airbus A320 (V) system, however, uniformally use stan-
dard off shelf processors wherever possible. Selecting a
single processor family for use across an entire flight con-
trol system may not be ideal, however.

Support for deployment of diverse processors in a single
flight control system can be quite advantageous, partic-
ularly later in the life cycle of a system when the original
processor used in a design may no longer be the opti-
mal choice. Using arrays of diverse processors also has
the advantage that different processor module designs are
sufficiently dissimilar to minimise risk of identical faults
appearing across different designs.

A major disadvantage of such an architecture is however,
that barriers of incompatibility are introduced which, in
a modular, distributed environment, may inhibit a run-
time executive from loading code into certain processor
modules. This could, for example prevent one processor
module from taking over a task from a damaged proces-
sor in the event of a fault.

These compatibility barriers make the design of a fault
tolerant software backbone more difficult as it locks re-
sources away from a systems designer. Systems based
on Coral, on the other hand, execute a pcode based bi-
nary format. Any processor running a native version of
the Coral runtime is therefore compatible with the Coral
binary format.

The effect of this is that these barriers of compatibility are
removed from the system, allowing any system process to
use any resource in the digital avionic system.

A UAV Systems Development Toolset
i

The WACUT toolset couples an efficient aerodynamic
analysis code to a flight simulation environment which

can be linked to a control system developed in the Coral
programming language.

The aerodynamic code, known as AAP is designed from
the ground up to work with Coral, and its native output
format is actually a Coral subprogram.

This subprogram can be compiled in as part of a unified
controller and flight simulator pair, resulting in a means
to directly test the impact of small design changes on a
UAV systems ability to satisfy performance objectives.

An almost limitless variety of missions can be pro-
grammed into the controller, allowing great flexibility in
creating test cases for the complete Autonomous UAV
system.

A post processor can be used to filter and tabulate the
output’ of a simulation run so that concise plots can be
generated which can be used as a basis of judging the
ability of a vehicle system to perform in particular condi-
tions.

Figure 1 shows the way the various tools and systems
interface to form the complete toolset.

"

Control System
Design

Coral
Executive

Performance
Indexes

V

Figure 1: The WACUT Toolset.

Intelligent Controls Design Tools

At the core of the WACUT toolset is the Coral system, de-
signed to simplify the process of developing fault tolerant
digital control systems for autonomous vehicles. Coral
consists of a programming tool set including a specialised
programming language and a runtime executive.

The executive can either be run on a single workstation,
a network of workstations, or on a specialised redundant
flight computer. One such specialised computer is the
PACER, which was designed at the Wackett Aerospace

Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

Center as a test platform for Coral. By deploying Coral on
a platform such as the PACER, the development of a fault
tolerant system can be almost totally automated, and
the task of programming is simplified in comparison with
the use of conventional programming languages, such as
Ada. The syntax and structure of the Coral language
corresponds closely to the structure of the conventional
block diagrams used by controls Engineers.

Through the development of Coral, the usual controls de-
sign implementation loop has been considerably shortened

Using conventional computer platforms and program-
ming approaches, the controls engineer would design and
test the system in a simulated environment, then pass the
design to software and electronics hardware design teams
who then perform the implementation.

With this new approach, the controls designer can per-
form a simple translation from a block diagram to a pro-
gram in the Coral language, then directly execute the re-
sulting program on a custom built flight control computer
such as the PACER, a PC or a network of workstations.
The block diagrams can include transfer function blocks
as well as fuzzy logic blocks.

Coral

¥

The Coral programming language is based loosely on the
COREL language (1) which is also aimed at real time
parallel control applications. Programs written in Coral
are compiled into a machine independent pcode format,
ie a compact binary format which can be read into a vir-
tual machine and executed via interpretation. Compiled
programs are encoded in such a way that they can be
broken up and automatically distributed across a parallel
processor array, such as the PACER or a network of work-
stations. If possible, the entire processor array is used in
the implementation of a particular controller.

As an extension of this capability, this distribution of func-
tion across the array can be done redundantly, so that
multiple, redundant copies of controller blocks are placed
on different processors. The runtime executive then takes
care of any voting and execution of user supplied failure
detection codes, which must be supplied as part of the
Coral program describing the controller.

A series of small examples are presented in the following
section to give the reader a contextual feel for the struc-
ture of the language. The first three examples define a
series of reusable blocks - each of which are used in the
final example, which links the former three to form a pro-
gram which outputs a performance index indicating how
well a given vehicle will track a given pitch hold command
when under the control of a given controller.

The examples form a basic introduction to the most ele-
mentary features of the language only, and should not be

seen as a complete description of its functionality. Read-

ers interested in learning more about Coral should consult
10

Coral Programs consist of a network of blocks, which are
connected to one another via a series of linking expres-
sions. Links can take many forms, including mathematical
equations, fuzzy logic rules, and conditional expressions.
Each block has associated with it a series of ports, to
which links are connected, and internally may contain any
number of nodes, which act as intermediate connection
points, and further blocks, all of which are also joined
using linking expressions. Figure 2 shows the major com-
ponents of a Coral program.

Node

Instantiated Block.

Figure 2: Constituent parts of a Coral program.

One of the most fundamental requirements of any dig-
ital systems development toolset is facilitation of differ-
ence equation implementation.These ‘equations are used
primarily for the implementation of transfer functions in
the Z domain, but also for certain numerical methods,
including numerical integration algorithms.

For the first example, a block type is created which imple-
ments a fourth order Adams Bashford integrator. Once a
block type is created, it may be reused through instanti-
ation in any other block type which is defined.

. In this example, all inputs and outputs are logged for four _

time steps, hence the (4) after the name of the block type.
To access previous values of an input, the @(t-x) suffix
is added to a variable, where the x indicates the time lag
required. The variables “t” and “dt” give the current
time and the current time step, respectively. These four
facilities allow any digital controller to be implemented.

#import <Coral.cor>

block type AB4_Integrator(4):SISO

Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

{
output:= input +
dt/24.0%(55.0*input-
59.0*input@(t-1)+
37.0*input@(t-2 -
9.0*input@(t-3));

Note that the block type created, AB4_Integrator, inherits
its behaviour from type SISO. SISO, one of many prede-
fined blocks provided by the Coral standard library, simply
declares two port types, called input and output. Since
the block AB4_Integator inherits its behaviour from SISO,
it too has these two ports. For this reason, no ports are
defined in this example.

Ground up fuzzy logic support is an important element
of Coral , as it provides a basis for the implementation
of high level control behaviour using linguistic rule struc-
tures.

The following example shows fuzzy logic processing in ac-
tion. It begins with the standard block and block declara-
tion header, but rather than immediately declaring ports,
it declares two specialized port types. ‘

Port types are used to define sequences of valid fuzzy sets
- each of which is characterised by a trapezoidal member-
ship function. The functions are described by listing four
numbers which give the vertex positions of each trapezoid
at the 0,1,1 and 0 membership points on the function, re-
spectively.

block type Longitudinal_Controller
P
port type Angle_Error_Type
{
NL -PI ,-PI ,-0.30,-0.17;
NM -0.30,-0.17,-0.17,-0.05;
NS -0.10,-0.05,-0.05, 0.00;
ZE -0.05, 0.00, 0.00, 0.05;
PS 0.00, 0.05, 0.05, 0.10;
PM 0.05, 0.17, 0.17, 0.30;
PL 0.17, 0.30, PI , PI ;

port type Elevator_Deflection_Type

NL -0.70,-0.52,-0.52,-0.35;
NM -0.52,-0.35,-0.35,-0.17;
NS -0.35,-0.17,-0.17,-0.00;
ZE -0.05, 0.00, 0.00, 0.05;
PS 0.00, 0.17, 0.17, 0.35;
PM 0.17, 0.35, 0.35, 0.52;
PL 0.35, 0.52, 0.52, 0.70;

ports:

Deflection:Elevator_Deflection_Type;
Error:Angle_Error_Type;

{
if (Error = PL) Deflection = PL;
if (Error = PM) Deflection = PM;
if (Error = PS) Deflection = PS;
if (Brror = ZE) Deflection = ZE;
if (Error = NS) Deflection = NS:
if (Error = NM) Deflection = NM;
if (Error = NL) Deflection = NL;
}
}
The types Angle_Error_Type and Eleva-

tor_Deflection_Type are used in declaring the two
ports used in the Longitudinal_Controller block type.
Port types can be declared and used with any port, not
just ports which are used for fuzzy logic processing,
however the set values are ignored for all processing
other than fuzzy logic processing.

The example continues by listing sequences of fuzzy logic
rules defining the function of the controller.

As well as allowing for fuzzy controls design and dig-
ital implementation of SISO transfer functions, Coral
also supports modern controls implementation through
its comprehensive support of matrix math operations.

#import <Coral.cor>
#import <AB4_Integrator.cor>

block type Longitudinal_Model
{ -
ports:
x:Reall4];
u:Real;
nodes:
A: Reall4][4];
B: Reall[2][4];

0.02, 7.32,-9.81, 0.00],
0.72,-102 , 0.00, 26.3],
0.00, 0.00, 0.00, 1.00],
0.00,-8.12, 0.00,-1.19]1;

.00],
.99],
.00],
0.5] 1;

r—ur—-n-'-ur—:
= O Wwo

x := AB4_Integrator (A*x+B*u);
}
}

Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

This example shows how each Coral port can have a se-
ries of channels associated with it, in much the same way
as arrays can be implemented in conventional program-
ming languages. These channels can be used to store the
elements of matrices. All common matrix operations are
supported by Coral .

Note how the AB4._lIntegrator block, defined in a previ-
ous example, is reused in the construction of this block.
The Coral language supports the use and reuse of block
types via a function call style syntax, in which blocks are
created, and linked to the parent block by linking the de-
fault "output’ port of the block to the port receiving the
function call return value { x in this case), and linking
the port(s) listed in the function call argument to the in-
put ports of the new block. This 'function call’ style of
block creation is the first of two ways block types in Coral
programs can be used in other blocks.

Blocks can be defined and saved to individual files, then
called upon as building blocks. The following example
does just that, using the second method of block type
usage, by building a block which uses the blocks defined
earlier.

The example creates an instance of the Longitudi-
nal_Controller and Longitudinal_Model blocks, via a dec-
faration in the “blocks” section of the block type declara-
tion, and an integrator using the function call style syntax
introduced earlier. The ports of these various blocks are
then linked to create a system consisting of a controller
linked to a longitudinal aircraft model. The controller is
given a command to pitch the aircraft to 0.5 radian, and
the integral of the error from the plant model is used as
a simple performance index.

#import <Coral.cor>

#import <AB4_Integrator.cor>

#import <Longitudinal _Model.cor>
#import <Longitudinal_Controller.cor>

block type Experiment

ports:

Error,Total_Error:Real;
blocks:

Controller:Longitudinal_Controller;

Model:Longitudinal_Model;

{

when (t < 5)

{
Model.u:=Controller.Elevator_Deflection;
Error:=0.5-Model.x[3];
Controller.Angle_Error := Error;

Total _Error:=AB4_Integrator(abs(Error));

Ports within blocks instantiated within the host block are
referred to by giving the block name, followed by a period
and the port name . The first expression line of the block
therefore connects the "X’ port of the Filter to the T port
of the host block.

Most of the expressions in the expression block of this ex-
ample perform a direct link function, with the exception
of the “when” block. A when block is used to make a
group of expressions dependent on a particular boolean
condition. In this case, the performance index is calcu-
lated for five seconds of operation only.

Runtime Executive

The Coral runtime executive executes Coral programs
once they have been compiled into the Coral binary for-
mat which is effectively a processor independent pcode.

The system is designed to operate on loosely coupled
parallel processor arrays,but the executive hides the par-
allel nature of the target system from the controls de-
signer/user, and gives the system the feel of a single ma-
chine. The executive orchestrates operation of the sys-
tem and is responsible for both redundant loading and
execution of programs on the parallel system. It is also
responsible for system monitoring and reconfiguration in
the event that one or more processor modules fail.

In a multiprocessor system, each processor must execute a
copy of the Coral executive. Given that the Coral pcode is
processor independent, once a processor system is running
the Coral executive, it may connect to any processor pool
of Coral processors. The types of processors or systems do
not matter at all. For ground based simulation, therefore,
a heterogeneous network of varied systems may be used.

The runtime is highly portable, and requires only the most
basic of operating system services. A scheduler, for ex-
ample is not required, nor is operating system support
for any form of multitasking or threading - the executive
provides all of these services.

The PACER

The PACER is a proof of concept flight computer de-

_ signed with execution of Coral based programs in mind.

It has been designed specifically for real time intelligent
flight controls research, and provides a platform for the
implementation of control systems optimised using the
WACUT toolset.

The PACER is essentially a parallel processor array or-
ganised as a loosely coupled series of independent mod-
ules. The primary system module is the processor mod-
ules which are connected together via a series of commu-
nications ports. The number of modules is not limited,
so whilst a small, non fault tolerant UAV controller can

Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

be created using a single module, very large and complex
fault tolerant systems may be created by linking many
modules together.

The current configuration houses 3 processor modules
each of which include a Motorola 68360 microcontroller,
operating at approximately 5 VAX MIPS. Each module
includes 4MB of DRAM, and 512 KB of FLASH memory
for non volatile on line data storage. The modules are
upgradeable to 32MB of DRAM.

Each module is connected to four separate busses through
which data is transferred at a rate of 2M bits per second.
The four links ensure that the modules are connected in a
redundant mesh structure, in which intermodule commu-
nications are possible even in the event of a link failure.

Each of the modules of the PACER may be connected to
an optional 10 interface card, which provides high speed
16 bit data acquisition and motor control functions, effec-
tively forming a link from the computer to the airframe.

Flight Vehicle Simulation.

Flight Control Systems implemented via Coral programs
can be tested using a flight simulator code, which is also
fmplemented in the Coral language. The Coral runtime
executive may be run on a PC in addition to over an
RTOS on an embedded target such as the PACER, there-
fore rapid prototyping and optimisation is possible by con-
trolling an airframe in simulation.

The simulator supports full six degree of freedom oper-
ation, and achieves nonlinear operation by switching be-
tween banks of flight derivatives. A nonlinear gust model
is also provided.The vehicle simulation code is generic in
nature, and takes its derivative information from a Coral
block which can either be written by hand, or generated
automatically by the AAP program.

Aerodynamic Analysis Program

The Aerodynamic Analysis Program (AAP) was devel-
oped to estimate an aircrafts aerodynamic load distribu-
tions as well as its aerodynamic derivatives. Although

not developed exclusively for UAV's, its development has

been centered around their design requirements.

The aerodynamic load distributions are determined by
the Aerodynamic Load Distribution Program (ALDP)
at given design points.The aerodynamic derivatives, de-
termined using the Aerodynamic Derivatives Program
(ADP), are used to assess the aircraft handling properties.

Figure 3 indicates the overall AAP structure. The in-
dependence of the ALDP and ADP is evident, allowing
them to run in conjunction or individually.

Lookup
Tables

E

Figure 3: AAP Structure

The entire AAP has been developed using Matlab 4.2 and
at this stage has only been implemented in that environ-
ment.

Aerodynamic Load Distributions

The Aerodynamic Load Distribution Program (ALDP)
primary role is to provide aerodynamic distributions for
the various aircraft components. At this stage two com-
ponent types are supported; surfaces and bodies, analysis
of which is undertaken by a modified lifting line method
and a slender body method G respectively.

Nonlinear Lifting Line Method Traditional Implementa-

tion of the Lifting Line Method (1) (3 assumes that the
lift-curve-slope is linear (¢ = ayineqr). thus an error is
introduced in the post linear segment of the lift-curve as
is evident in figure 4. This is a reasonable approxima-
tion for applications where Reynolds Number is high. As
Reynolds number decreases the region where @ is linear
decreases, though the non-linear region remains relatively
constant. Thus the result is an increase in the region where
error is present with the decrease in Reynolds Number.

-g—‘:(a —) = ; sin(nf)(1 + ——8_3511 5 O

To reduce this error the monoplane equation is modified
as per (2) so that C, and its corresponding a (@ = ajocat)
are used rather than computing the Cy, on the fly from
Qlinear and a0. This reduces the errors in the post-linear
region.

Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

Cy(section)f
CLlinear / A
a /
CLiru‘x Y focal t\. S erroTinear
Cr > — Yy
noniinear /
CL _/ *error,.,,,.;,-m,

true

init

Figure 4: Nonlinear Lift Curve Slope

S0 =)1 +n(gl2) (2)

n=1
14

The traditional LLM had been further extended to allow
for wing sweep and dihedral. This has been achieved by
applying a transformation to the physical wing, as shown
in figure 5. The physical wings quarter chord is 'rolled
out’ to form a 1-D lifting line, i.e. no sweep or dihedral.
Local velocity, a and 8 are also transformed across the
span to compensate for the 'roll out’. Once the lifting line
has been analysed using the modified LLP a further trans-
formation is applied to resolve all forces to the stability
axis.

Figure 5: Transformation and 'roll out’ of the wing

Eppler PROFILE Program The 2-D data required by
the LLM is found using the PROFILE () program. PRO-
FILE being deemed more suitable than, the comparable,
XFOIL due to lower computation times (®), a factor that
is critical for aircraft having many different section / new
sections / flap settings.

Airfoil data files, in the form of Cr, a, Cp, Car and
Aerodynamic Centre lookup tables, are produced from
the PROFILE output file. These two dimensional lookup
tables cover a range of Reynolds Numbers and angles
of attack, thus forming a non-linear model of section
data. The Reynolds Number and angle of attack ranges
have been chosen to cover the range expected by piston-
propeller powered and unpowered UAV's.

Slender Bodies The aerodynamic load distribution on the
bodies of the aircraft are found by the superposition of
two flow types; axisymetric flow around a body of rev-
olution and traverse flow around a body of revolution.
The use of this theory results in the assumption that the
bodies’ cross-section is circular and is pointed. These as-
sumptions limit the application of this theory to providing
C)r data and interference effects. Methods more suitable
for Cr, and Cp distributions are presented by Nielsen (5)
and constitute work-in-progress for the AAP.

As with the Lifting Line Method discussed above, al-
lowances have been made for fuselages with centre lines
that are not straight, i.e. cambered fuselages. The fuse-
lage centre line is ‘rolled out’ parallel to the aircrafts x-axis
[fig.4]. As with the wings quarter chord the local velocity,
alpha and beta are all transformed to compensate for the
"roll out'.

)

2P
-~ 2 Z
23k ld<

ST
e
23

i

Figure 6: Transformation and 'roll out’ of the fuselage

The axial flow velocity components are given by equations
3 and 4.

Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

1 1
a(r,z) = i/o [(u(zo).S (zo)r(z0) o (3)

4 Jo (@ — 20 +r(zo)?]F

1) U -1
1 /0 u(zq).S'(zo)(z O)dxo (a)

=00 =5 o -0 +r(ao

The transverse flow velocity components are given by
equations 5, 6 and 7.

4-(r, 0,) -1 /l u(zo) sin(8) dig —

dr Jo [(z — z0)? + r(z0)?)?
3 b o sin(8)r(z0)2dzo
47 Jo [(z — z0)2 + r(a:o)2]%

(5)

Zo

1 (z0) cos(6)
w69 = 3 | - zop +ropE e O

' -3 b u(zo)(z — zo)r(zo) sin(6)
w0 =g o [(z—20)? +r(z0)?]

d.’L'O (7)

Moment Distribution normal to the flow is given by equa-
tion 8.

27
Moormai(2) = 3pQ@% [(z + RR) sin(0)R(z)Cybzds
0
(8)

where:

G G+a

Q%

_2Qz
Cp = 0w

i =2TR?*\/v? 4 w?

u,v and w are loca!l velocity components.

- —g—(qrsinﬁ + go cos)
[o0)

Qis the local summation of u,v and w.

R is the local body radius.

Component Interference As components are analysed
separately interference effects can be incorporated by two
different methods. The first is an iterative procedure, the
second determines interference conditionally i.e. a given
component can only cause interference to specified com-
ponents.

Fuselage

Tail Boom

1,2,3&4

Figure 7: Conditional Interference of Components

The second method, illustrated in figure 7 was chosen pri-
marily due to its significantly lower computational time.
One pass is required for this method whereas a minimum
of 2(g — 1) iterations are required for the iterative proce-
dure, where g is the number of groups.

Interference caused by bodies is determined by using
equations 3 to 7 above and interference caused by lift-
ing surfaces is determined by integrating the effect of
trailing and bound vortices across the span. It should
be noted that all interference effects are calculated using
the physical, rather than the 'rolled out', location of the
components.

Input And Out Format Table 1 outlines the data required
by the ALDP for the analysis of an aircraft at any given
design point. The same data is required by the ADP and
will be discussed in more depth later. Brackets indicate
that an array of values is input for a given parameter, to
allow for derivative determination.

TYPE/Group Input Data

AIRCRAFT Aircraft Ref.: velocity],[altitude] 5temp,
alpha].[beta].[roll rate],
pitch rate],[yaw rate].CG

SURFACE Surface Ref.: x,y,z.incidence

-canard Section Prop: x,y,z,twist,chord,name

-wing

-horizontal tail
-vertical tail(1&2)

Control Prop.: inboard section,
outboard section,
hinge position,
[deflection]

BODY Body Ref.: x.y,z,incidence

-fuselage(1&:2) Section prop: x,y.z,width height

-tail boom(1&2)

ENGINE Disk Ref.: x,y.z,incidence,toe,
[exit velocity]

-engine(1,2,3&4) Nacelle Prop.:™ x,y,z,width, height

Table 1: Analysis input Data

A total of 13 groups and 16 associated control surfaces

Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

are allowed by the AAP (and ALDP), although only the
wing group is required for analysis to be performed. Such
flexibility allows a wide variety of configurations to be
analysed without rewriting any part of the AAP.

Aerodynamic Derivatives

The core of the Aerodynamic Derivative Program is iden-
tical to the Aerodynamic Load Distribution Program. The
ADP utilises the same input files, analysis procedures and
approach to interference but produces quite different re-
sults. Whereas the ALDP analyses a single design point,
the ADP deals with large amounts of the flight envelope.

Derivative Determination Derivatives are determined us-
ing a looping procedure. For instance aerodynamic quan-
tities such as C, Cp and C)y are found (in the form of
matrices) over a range of velocities, altitudes and angle
of attack (in the form of arrays). These quantities are
then differentiated with respect to the velocity arrays.

The major penalty inherent in this method is the com-
putation time associated with the extensive utilisation of
iteration in the Matlab environment. Execution times in
the current Matlab version are in the order of hours to
determine a full set of derivatives with input arrays having
10 values i.e. each derivative array is made up of 1000
values. Steps are, however underway to convert this crit-
ical code to a compiled language. This will significantly
improve performance. Significant speedup with the cur-
rent implementation can also be achieved by reducing the
output table size, but with a corresponding loss of accu-
racy.

Input and Output The ADP outputs derivative data in
two forms; it is written to an aircraft data file in the form
of a collection of 2D matrices and is also written to a
Coral source code file which can be linked in as part of
the WACUT flight simulator.

Test Case: A UAV System for Atmospheric Research

Through cooperation with the CSIRO Division of Atmo-
spheric Research, a series of atmospheric research related

missions have been proposed for application of a future °

RMIT UAV system. These mission scenarios, which are
described below, have formed initial test cases for the
WACUT system.

CSIRO Missions.

CSIRO’s existing air sampling program currently utilises
2 manned aircraft for air sampling in Bass Straight from
Melbourne to Cape Grim in Tasmania. This successful,

Longitudinal

CLnp = [velocity, altitude]
CDg = [velocity, altitude}

CDg4 = [a, velocity, altitude)
CDyr = [a, velocity, altitude]
CDq = [Q, velocity, altitude)
CDscy = [dcf, velocity, altitude]
CDswys = [Swf, velocity, altitude)
CD;. = [8e, velocity, altitude]
CLo = [velocity, altitude)

CLy = [a, velocity, altitude]
CLao = [da, velocity, altitude)
CLy = [a, velocity, altitude]
CLy = [, velocity, altitude]
CLq = [Q, velocity, altitude]
CLgscs = [8cf, velocity, altitude]
CL;sywy = [§wf, velocity, altitude)
CL;s. = [de, velocity, altitude]
CMy = [, velocity, altitude]
CMgy, = [da, velocity, altitude]
CM, = [a, velocity, altitude)
CMur = [o, velocity, altitude]
CMq = [Q, velocity, altitude]
CMscy = [6cf, velocity, altitude)
CMs., ¢ = [Swf,velocity, altitude)
CM;s. = [8e, velocity, altitude]
Lateral

Clp = [B, velocity, altitude] -
Clp = [P, velocity, altitude)

Clr = [R, velocity, altitude]
Clsa = [8a, velocity, altitude)
Clsr = |87, velocity, altitude]
Cmg = |8, velocity, altitude]
Cmp = [P, velocity, altitude]
Cmp = [R, velocity, altitude]
Cmsq = [8a, velocity, altitude)
Cmsr = [6r, velocity, altitude]
Cng = {8, velocity, altitude]
Cnp = [P, velocity, altitude)
Cng = [R, velocity, altitude)
Cnga = [6a, velocity, altitude]
Cnsr = [0, velocity, altitude]

Table 2: Aerodynamic Derivative Data

but to date expensive programme has potential to be re-
placed by a UAV programme @ Potential cost sav-
ings through the use of an UAV may permit the program
to be extended. The frequency of flights to Cape Grim
would be increased and, if possible, similar profiles flown
at other locations. Regions of particular interest are off
south-western Western Australia and offshore from Dar-
win. The two missions currently flown by the CSIRO
are a pollution plume detection mission and a continuous
carbon dioxide sampling mission.

Plume detection: This mission involves the direct mea-
surement of the cross-section area of the pollution plume
emanating from Melbourne, for the purpose of better es-
timating emissions of a wide range of trace constituents.
Such a measurement would probably be conducted in the
vicinity of the Baseline Monitoring Station at Cape Grim
on the north-western tip of Tasmania. The Baseline Sta-
tion would provide concentrations of the gases of interest
at ground level during the flight.

A WACUT based simulation of this mission is being de-
veloped, which links a random pollution spread model to
the WACUT flight simulator code, providing a controller
with a series of pollution level inputs which can be used

Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

for tracking and mapping the outside of a pollution plume.
The WACUT output from the simulated mission run in
this case can be used to determine how closely the vehicle
tracks the plume, and hence can be used as a basis for
controller and

Continuous carbon dioxide measurements; In a second
mission, measurements are taken of the vertical and/or
horizontal distribution of the gas in the atmosphere, over
large regions. Such data has the potential to provide
information about the global carbon cycle and the pro-
cesses of atmospheric transport (the movement of gases
from place to place), which is not available using present
measurement strategies.

The important design parameters in this mission type are
endurance, and ability to make very tight turns, spiraling
upwards. Design evaluation of these traits can be done
with a basic WACUT system, without requiring special
extensions as per the previous mission. A waypoint se-
quence is simply programmed into the system and the
mission output is observed to determine the vehicle per-
formance.

Future Work

?

The toolset described currently performs an analysis and
simulation function, ie it alone cannot perform any sort
of system optimisation on a system design. There are a
large number of variables which could be optimised us-
ing an automated technique in any UAV system - cer-
tainly optimising for all of these parameters at once is
quite impractical, especially given the time taken to run
an analysis and mission simulation.

1t may, however be possible to encapsulate a full toolset
run , simulating a restricted manoeuvre into the evalua-
tion function of an optimisation routine. This would allow
the designer to optimise a restricted number of variables
whilst holding others constant.

Conclusions

A toolset has been created which greatly simplifies the
design of autonomous UAV systems. The toolset pro-
vides a supporting role in both the airframe and avionic
systems design process, reducing the overall time required
to design an autonomous UAV system.

The toolset consists of three main components: a flight
vehicle aerodynamic parameter estimation code, a flight
and mission simulator, and finally a control systems de-
velopment environment supporting the Coral runtime en-
vironment.

[}

The toolset as a whole permits evaluation of an airframe
when under the control of a specific control system,and

allows the designer to carefully observe the performance
of the combined system both in performing manoeuvres
and in attempting to satisfy mission goals.

The system is currently being used in the design process
of a flight vehicle for atmospheric research, being code-
veloped by RMIT and the CSIRO Division of Atmospheric
Research.

References

(1) R Eppler and D Somers. A computer program for
the design and analysis of low-speed airfoils. Tech-
nical Report TM 80210, NASA, 1980.

(2) C Allison et al. Global atmospheric sampling labo-
ratory (gaslab): supporting and extending the cape
grim trace gas programs. Baseline Atmospheric

Program, 1993.

(3) E Houghton and N Carruthers. Aerodynamics for
engineering students. Edward Arnold, third edition
edition, 1982.

(4) J Katz and A Plotkin. Low-speed aerodynamics
From wing theory to panel methods. McGraw Hill,
1991.

(5) J Nielsen. Missile Aerodynamics. McGraw-Hill, New
York, 1960.

{6) A Pope. Wind tunnel testing. Wiley, 1947.

(7) CR Spitzer. Digital Avionics Systems-Principles
and Practices. McGraw-Hill, second edition edition,
1993.

(8) LA Thompson and C Bil. Design and flight trials of
multi purpose autonomous flight vehicle system. In
Proceedings, PICAST2-AAC6, 1995.

(9) R Trofoletto. Estimation of aerodynamic load distri-
butions on the pc9/a aircraft using a cfd panel code.
Technical Report DSTO-TR-00XX, DSTO Aero-
nautical and Maritime Research Laboratory, 1994.

(10) F Valentinis. Coral language specification and user
manual. Technical Report 10253, RMIT Aerospace
UAV Design office, 1998.

(11) F Valentinis, C Bil, and P Riseborough. Develop-- -

ment and trials of an autonomous flight control sys-
tem for uav's. In Proceedings, ICAS '96, 1996.

	00001.PDF.pdf
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011

