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ABSTRACT

In the quest for very high endurance, designers of Un-
manned Air Vehicles may need to develop control sys-
tems that extract energy from gust patterns such as
thermals. This paper presents control systems for two
stochastic, optimal control problems that arise from this
concept of soaring UAV: the first involves centering the
vehicle about a thermal, and the second involves the use
of thermals and inter-thermal gusts. In both cases, rein-
forcement learning provides the basis for high level, di-
rect adaptive control that drives a low level control sys-
tem. The low level systems were constructed with the
aid of a heuristic and open-loop solution respectively.
Simulation results indicate the success of the designs,
though faster convergence is necessary for practical ap-
plication.

INTRODUCTION

With endurance becoming a critical mission objective
of Unmanned Air Vehicles (UAVSs), automatic control
will be an integral part of advanced designs. Au-
tonomous control allows deployment of many vehicles
by a relatively small support crew.

Range and endurance can be extended considerably by
supplementing the on-board fuel supply with energy ex-
tracted from the environment. Solar power has been
identified as a potential way to do this. The AeroViron-
ment Pathfinder demonstrated the practicality of solar
power in high altitude craft]) and studies show that en-
durance of months is possible in summer near the poles.

However with current technology, endurance generally
is limited to about a week, which is similar to that
achievable with non-renewable fuels. Moreover, solar
aircraft need very low wing loadings (6 kg/m?) which
tends to produce large, slow aircraft.

This restriction can be lifted by having the aircraft soar,
by which the aircraft maneuvers so as to draw energy

from various gust patterns. Factoring this into the de-
sign affords higher wing loadings and reduced battery
size, enabling greater payload and higher cruise speed.
Although vehicles employing this concept would need
to operate in the troposphere, indefinite ehdurance may
be possible in favorable weather.

Automatic control of soaring vehicles is challenging,
especially given the severe limitations on available
weight and power for avionics. Soaring is character-
ized by nonlinear dynamics and involves estimation of
weather conditions. Not only should the control be sta-
ble, it should also be optimal in that the vehicle safety
and mission performance depends on the vehicle’s effi-
ciency at both drawing energy from the wind and using
its energy for transport at the greatest speed.

This paper reports on two control problems associated
with this vehicle concept. The first is the fundamental
problenrof how to locate a thermal (rising column of
air) and position the vehicle around its center. The sec-
ond problem is how to use thermals and inter-thermal
gusts for greatest average speed. Sensor uncertainty
plays a significant role in both problems..

The authors address these problems with reinforcement
learning, a relatively new method of direct adaptive
control. This approach was pursued to investigate the
feasibility of designing autopilots that improve over
time and can adapt to changing vehicle dynamics or en-

vironment. Simulation experiments were performed on
an IBM 686-PR200+.

FLIGHT SKILLS VIA
REINFORCEMENT LEARNING

Reinforcement learning(z) describes numerical meth-
ods, that can be applied on-line, for learning an optimal
control policy entirely from scalar performance feed-
back (i.e. a reward signal). It amounts to direct adaptive
control, in that no system model is required. Not pro-
viding such a priori information comes at a price —
convergence can be slow.
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A particular strength of this approach is the ability to
optimize the control of systems with relatively arbitrary
representations of states and actions. It can thus be used
in learning to control the mode of a low-level controller
or coordinate low-level controllers(3). This capability
can be used to overcome concerns of suboptimal per-
formance, by designing a subordinate controller with
an assured properties. It can also greatly speed conver-
gence by simplifying the high-level task to be learnt.

Some roles of adaptive flight control (particularly of
certain low-level systems) are unlikely to warrant the
reinforcement learning approach. At present, it re-
quires considerable exposure to the system during con-
vergence and so cannot really be considered as a means
of learning to compensate for rapid structural failure.
When the plant can be modeled (and estimated) accu-
rately and conveniently, the model can usually be used
to derive a control system that adapts faster than would
reinforcement learning.

Reinforcement learning may be seen as a technology to
be adopted as a last resort, where the plant or objectives
are such that mathematical treatments fail. However, it
also deserves consideration because of the convenience
it offers, even for use off-line.

Its methods are generally directed at solving Markov
decision tasks, where the dynamic system evolves ac-
cording to transition probabilities that depend on the
state and control. Even though the presence of hidden
states pose similar problems to reinforcement learning,
as they do to other control systems, there is a certain ca-
pacity to learn strategies that are robust to uncertainty
and perceptual aliasing. This is particularly advanta-
geous in the context of weather-sensitive aircraft.

Several reinforcement learning control systems are
available(®) and the basis of most of these can be traced
to dynamic programming and the calculus of variations.
These systems, favored by the engineering community
for their mature foundations and transparency to anal-
ysis, are referred to as neuro-dynamic programming
(‘neuro’ reflecting the use of neural networks for func-
tion approximation).

Q-learning(s) with CMAC neural networks(® was used
in the experiments described in this paper.

THERMAL CENTERING

Task description

The objective is to find the path that terminates in a

circling maneuver about the thermal center and which
maximizes the net lift over the course. Optimal paths
implied by this objective are not minimum distance
paths to a tangent to the thermal, since the net lift is
a function of bank angle via its effect on vehicle sink.
A balance must be established in the trade-off between
tracking deviation and vehicle sink.

The following assumptions can be made to simplify the
problem:

o The thermal is constant over altitude, reducing the
task to two dimensions. ’

o Thermals drift at the same speed as the prevailing
wind, so lateral wind can be disregarded.

e The vehicle speed is constant: for our purposes the
maneuver starts with the aircraft at its safe ther-
malling speed.

¢ A lateral autopilot is in place to ensure turns are
coordinated (no sideslip). By further assuming the
autopilot is ideal (no delay or error), the task is fo-
cused on the higher level problem involving bank
control only.

Implicit in the objectives is the determination of the op-
timum bank angle for circling once the thermal has been
centered. As the maneuver terminates in this circling,
the thermal profile needs to be estimated in advance.

The vehicle sensors comprise a navigation system and
a total energy variometer, which measures vertical gust
velocity at the aircraft and is subject to noise. In prac-
tice, variometers are also subject to lag, but this is ne-
glected here.

The navigation system needs to measure heading, as a
bare minimum, as well as position. This could be ac-
complished with a compass and an inertial navigation
system or by two Global Positioning System units sep-

arated from each other.

Additional sensors may be required by the low-level lat-
eral autopilot.

Heuristic methods

The problem can be decomposed generally into two el-
ements according to a sensorimotor view (sensing plus
control). First, a mechanism is required to translate
the sensor measurements into information regarding the
thermal such as position and profile. This is called the
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Figure 1: Demonstration of centering heuristic

thermal locator. Another mechanism uses this informa-
tion to command the bank angle so as to move the vehi-
cle closer to the thermal.

A rough cut at the problem is to implement a broad
strategy employed by glider pilots. The strategies of ex-
pert pilots is probably reflexive, and it is difficult to ex-
tract these implicit skills. However, novices are taught
with the aid of a simple heuristic, of which several have
been proposed of varying efficiency and simplicity.

The heuristic proposed by Reichmann(”) (his method
III) is a suitable starting point. Turns are widened when
approaching the thermal and tightened when moving
away, thus:

¢ =k (1—cos(8)) + ks I
where ¢ is the bank angle, 8 is the bearing to the thermal

center, and ky, ko regulate the variation of bank.

Here 0 is the quantity to be produced by the sensor
mechanism.

For such a simple heuristic, Equation 1 is quite effec-
tive. Figure 1 shows it in action.

Nevertheless, this rough method is not actually optimal
with respect to our objectives. Clearly it needs to be ex-
tended to account for the thermal profile and variometer
€ITOrS.

Optimal centering

In practice, Reichman’s heuristic as presented above is
oversimplified. Pilots implicitly estimate thermal pro-
file as well as relative location, a}nd effectively refine
the gains of the above scheme as dictated by optimal-
ity and uncertainty. In particular, these gains may vary
with the distance to the center.

The numerical determination of the optimal gain sched-
ule can be cast as a reinforcement learning problem
where the net lift (as measured) acts as a reward signal.
This could be used on-line to adjust for slow variations
in the vehicle aerodynamics, or deteriorating errors in
the variometer.

Greater control over the thermalling heuristic is made
possible by the replacement of cos(6) in Equation 1 by
the sag-cosine function defined as

c. = &2
e|‘7-3|
€93 cos(9)
Cy = cos(d) “ea]
Co—1
6) = 1 2
sagcos(6) (C’,,+1+ ) i (2)
The heuristic, once normalized, becomes -
T
¢ = 5 [a2(1 — a1) sagcos(F) + a;] 3)

The parameters have been transformed to produce valid
heuristics in the range |a;| < 1, |az| < 1. The pa-
rameter a3 regulates the degree of sag, as illustrated in
Figure 2.

Trajectories are associated with an information value as
well as the performance (reward) payoff. The informa-
tion value is related to the exploration of the environ-
ment that is required by the thermal locator. To illus-
trate this, consider the functioning of the thermal lo-
cator when the path segment is linear (or nearly so) in
the early stage of search (Figure 3). The location prob-
lem is under-determined and there will be two potential
locations of the thermal. Similarly, estimation of the
thermal profile can also be affected by the vehicle path,
resulting in range errors.
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Figure 2: Sag cosine function

For completeness, the thermal locator needs to produce
relative bearing, and thermal profile. A neural network
will be constructed for this purpose.

The thermal locator comprises an array of nodes which
perform regression on variometer measurements. Each
node estimates the thermal profile assuming the loca-
tion is at the nodes uniquely assigned location. A com-
petition for the best fit establishes the resulting certainty
and thermal profile and location returned by the system.
This produces relative bearing, range, thermal radius
and magnitude.

The model of thermal profile used in the regression is
the exponential Gaussian:

wr(D) = We™(P/R)? (4)

where W and R is the vertical movement and charac-
teristic radius of the core, and D the (lateral) distance
to the thermal center.

. o i
Figure 3: Underdetermination of thermal center. The
dashed circle represents the illusory alternate location
when the path is linear.

Demonstration

Before testing the system under reinforcement learnin g,
it is helpful to optimize the system under ideal condi-
tions (where ideal means a perfect thermal locator is
in place). The benefits of doing this are twofold: useful
ranges of the controls can be obtained, thereby reducing
the search space when learning; and the ideal perfor-
mance of the system is determined, enabling assessment
of the learning system during convergence. The latter
point is important because knowledge of some baseline
performance, however idealized, can greatly assist in
trouble-shooting and validation of the learning system.

In order to concentrate equally on weak or smaller ther-
mals as strong, larger ones, the reward signal, 7 is de-
fined as the net lift (updraft less sink) divided by the
thermal strength W. The value w is a measure of the
average reward over the trial period.

Centering behavior was considered from the initial en-
counter of a thermal, so that at the starting position of
the aircraft, the updraft velocity equals a threshold value
(0.15 m/s). Thermal size and strength were selected
randomly in the range R € (40,80) m, W € (3,9)
m/s.

The initial bearing of the vehicle was randomly selected
in the thermal’s hemisphere, as appropriate to the initial
encounter case. The vehicle speed was held constant at
20 m/s, and a maximum load factor of 4 was imposed
(limiting the maximum bank angle). The sink model

had the form
VL D 2 + nV 2
with parameters: minimum drag speed Vip = 25 m/s,

lift to drag ratio LD = 35. The resulting model ex-
pressed in terms of bank angle is

1

“=7ID

)

1

“This optimization was performed using simulated
annealing(g), where the payoff (negative cost) was the
sum of average reward over fifty trials, each lasting 100
seconds. Multiple trials were necessary so that the an-
nealing process would find the best parameters despite
the cost function being stochastic (due to the random
initial heading). The importance-based sampling prop-
erty of simulated annealing then promotes parameters
that give the best overall performance, with a certain
economy on the number of trials performed per cost
evaluation.
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Figure 4: Plan view of trajectories showing failure modes of heuristic with scheduled optimal parameters.

Item max min
a, -0.771  -0.568
as 0.386 0.670
as 0.159 1.059

Table 1: Ranges of optimal parameters of thermalling
heuristic under ideal conditions

Optimization under these conditions was performed
separately for a range of thermals. The ranges of the
resulting parameters are shown in Table 1. The first two
parameters have relatively clear and uniform variation,
so it is reasonable to fix the third parameter to a constant
value when learning.

It is worthwhile to examine the performance of the sys-
tem where these optimal parameters are scheduled ac-
cording to the thermal profile as perceived by the neural
locator system. The thermal locator comprised an 11
by 11 grid of units spaced 20 meters apart. Variometer
noise was normal distribution of 0.3 m/s standard devia-
tion. Measured updrafts less than 0.1 m/s were rejected.

The normalized payoff, averaged over the range of ther-
mals was found to be 0.485 for the ideal case and 0.023
for the scheduled system. This indicates failure of the
scheduled system owing to the disruptive effect of the
thermal locator on the centering heuristic. Several dis-
tinct failure modes were identified in the trajectories of
the scheduled system. These are illustrated in Figure 4
along with their ideal counterparts.

Clearly then, there is scope for improvement by rein-
forcement learning. A Q-learning system was set up to
control the heuristic parameters ay, az within the ranges
established above. The third parameter was set at 0.61.

For problems of this sort, it would be useful for the his-
tory of variables to be included in the state variables,
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Figure 5: Thermal centering: Convergence history

so that the system could learn to react to changing data.
However, for the sake of simplicity this avenue was not
explored in this study.

The states of the reinforcement learning system were
the thermal locator’s estimate of the thermal size and
strength, and the certainty of the winning unit.

. Results of training are shown in the form of conver-

gence history, in Figure 5, and a sample trajectory in
Figure 6. Training was stopped once the normalized
payoff reached within 2% of the idealized performance.

These results demonstrate the feasibility of tuning the
centering heuristic via reinforcement learning, and sug-
gests that reinforcement learning was able to find strate-
gies that were robust with respect to the imprecision of
the thermal locator. More detailed analysis is necessary
to determine if, and how, these strategies actively hunt
the thermal.
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Figure 6: Robust centering of heuristic scheduled by
adaptive control

Discussion

Convergence took eight hours of computation, largely
due to simulation of the locator system. It would re-
quire several months in real-time, and so modest im-
provement is necessary to eriable practical application.

Use of the heuristic as a low-level controller was crit-
ical to the success of the experiment. An attempt at
optimizing the function ¢(6, . . .) directly may fail with
current reinforcement learning algorithms. If the gains
are subject to change over 8, the centering heuristic can
be disrupted, slowing convergence as the task becomes
much more complex.

The optimal path to the thermal center could be found
by using the bang-bang type controllers derived by the
calculus of variations. Optimal controllers of this type
have been obtained for wheeled vehicles, e.g. (9). Sim-
ilar controllers apply here, since flight in the horizontal
plane is equivalent to wheeled vehicles with bank angle
analogous to steering angle. However, this approach
would only be appropriate if the start position was dis-
tant from the thermal center, and would only be possi-
ble if the thermal location and profile were known in
advance.

SPEED-TO-FLY UNDER UNCERTAINTY

Speed-to-fly theory is a method of determining how fast
to fly in cruise between successive periods of circling in
thermals. Metzger and Hedrick(10) developed a unified
speed-to-fly theory that includes thermalling and dol-
phin flight (speed changes during cruise).

This theory is derived by the calculus of variations
and considers the vehicle passage across a segment of
known distribution of gust velocity. It determines the
ring setting which singly dictates the strategy to be fol-
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Figure 7: Speed loss due to estimation error in gust
strength

lowed so as to reach a commanded height (or achieve a
commanded glideslope) in minimum time.

The ring setting governs the speed of the vehicle in dol-
phin flight cruise as a function of gust strength. Fol-
lowing the dolphin segment, the glider climbs in a ther-
mal (where possible) until the commanded height is
reached. The relative activity of the two modes depends
on gust strength and distribution.

Influence of gust estimation

In practice, the gust distribution is not known but must
be estimated on the basis of past variometer measure-
ments and perhaps aided by visual cues such as ter-
rain and cloud features. In this study, we simplify the
sensing issues by considering only errors in magnitude,
though the distribution of updraft and sink would prob-
ably be more prone to error in practice.

Although it is possible to adjust the open loop policy as
the estimate is improved, it is difficult to quantify just
how this might be done. It is assumed here that one
commits to the original speed ring setting, so the only
adjustment that can be made during its execution is the
time spent thermalling.

Errors in the gust estimate lead to height errors and

speed losses. Figure 7 shows the resulting variation
of speed loss to estimation error for climb, level flight
and diving. Note that overestimates are more detrimen-
tal and that the loss characteristics vary with command
glideslope.

These were calculated for a sailplane with minimum
drag speed 25 m/s, lift to drag ratio of 49 and a maxi-
mum speed of 46 m/s. The gust distribution was a sym-
metric step.
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Height errors that are incurred can be taken care of, by
commanding the height proportional to the height error
(as recommended by (11)). This will ensure that the
height is bounded, but it isn’t necessarily the optimal
way of doing so.

Optimal height correction

Because average speed varies strongly and nonlinearly
with gust strength, estimation error and commanded
glideslope, there is scope for improvement to this sys-
tem in several areas. Greater speeds would result, for
example when the aircraft is too low, by waiting for a
strong gust in which to climb.

The speed error curves of Figure 7 suggest that the es-
timator should be biased to underestimate in order to
minimize the impact of error on speed. A similar ef-
fect might be achieved by adjusting the speed ring set-
ting from that corresponding to the estimation. Indeed
a common technique of glider pilots is to set the speed
ring somewhat conservatively.

Attention is restricted to adjusting the height command
system so as to improve the average speed and mini-
mize height errors. This was cast as a reinforcement
learning problem, where the states of the system are the
estimated gust strength and height error. The control
variable a adjusts the height command system:

he = —h+a %)

Reward signals were proportional to average speed less
the square of the height error.

It should be mentioned that a separate reinforcement
learning controller, in which the control variable was
height command, was able to find an appropriate height
correcting strategy, but did not sufficiently concentrate
effort on optimizing speed.

The test environment consisted of an independent nor-
mal distribution of gust strengths of mean 2.54 m/s
(500 ft/min) and standard deviation 0.568 m/s. Each
gust segment was about 300 meters long. The esti-
mator was modeled by adding noise to the actual gust
strength and was of normal distribution of standard de-
viation 0.227 m/s. Independence means the task has the
Markov property, though this restriction can be lifted

with special mechanisms to address hidden states(12).

To establish baseline performance, the system was eval-
uated with commanded height . = —h, producing an
average speed of 18.0 m/s and height mean square error
of 24 m. Performance of the learning system during
convergence, expressed as percent improvement over
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Figure 8: Convergence of speed-to-fly/height correc-
tion system showing improvement over baseline perfor-
mance

the baseline speed, is shown in Figure 8. The 4.5 per-
cent speed improvement achieved is significant. This
speed is also 4 percent faster than the baseline system
with no estimation error. Height correction was im-
proved by 8 %.

Discussion

This problem was investigated largely as an exercise in
adapting reinforcement learning to flight control. In ad-
dition, we were interested in quickly assessing the im-
pact of uncertainty on speed-to-fly.

An optimal controller for this problem perhaps could
be derived using an analytical technique, but this would
require knowledge of various quantities,such as proba-
bility distributions, that may not practically be available
to the designer. The strength of the approach adopted
here is such quantities could be obtained by the learn-
ing system itself, while in operation.

For this problem, reinforcement learning was quite con-
venient and fast to simulate; time taken for the system
to converge was only twenty minutes. However, con-
vergence would have taken roughly six months of con-

tinual flight.

The learning system was successful in discovering,
largely by itself, a control law that performed quite well
despite significant sensor uncertainty. It would require
substantial extension to be practical for on-line imple-
mentation, particularly because the real-time cost of the
learning was high. Moreover, the system was adapted
for a specific environment.

By building upon studies of this sort, we might be able
to design more practical controllers (whether adaptive
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or not) that function well on a whole range of environ-
ments. A support for such optimism is the potential for
generalized control laws. Transformation of sensor and
control variables and the use of neural networks may
provide great assistance.

CONCLUSIONS

The control problems addressed in this paper con-
tribute to an enabling technology for a novel concept
of high endurance UAV. The results demonstrate the
convenience offered by the reinforcement learning ap-
proach to adaptive control. However practical applica-
tion awaits advances in convergence rate and general-
ization.

The experiments showed that the effects of uncertainty
could be addressed appropriately by the control de-
signs: in the thermal centering task, the controller
helped ‘reify’ the unobservable thermal location and
profile; and the controller for the speed-to-fly task both
compensated for estimation error and exploited random
variation in the environment. No attempt was made to
find the system parameters for fastest convergence or
best final solution.

Formulating the adaptive controller above a tailored,
hard-wired controller was necessary to simplify the
learning task. A secondary benefit of this is to provide
a degree of protection against catastrophic failure.

It is hoped that this study will stimulate research into
applications of reinforcement learning to flight con-
trol, particularly in autopilots that learn to improve fuel
economy over the life of the vehicle.
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