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Abstract

An efficient calculation method for viscous incompress-
ible flow prediction about axisymmetric bodies has
been coupled with a hybrid optimizer and an evolution
strategy. The coupled tool was employed to perform
numerical shape optimizations of natural laminar flow
bodies for various Reynolds number regimes. Contrary
to the usual approach, the body geometry is not op-
timized in a direct way with the present method. In-
" stead, a source singularity distribution on the axis is
used to model the body contour and the corresponding
inviscid flow field. Viscous effects are considered by
means of an integral boundary-layer procedure. The
reliable and consistent transition prediction is of es-
sential importance for a successful shape optimization
‘of laminar bodies. Therefore, a proved e™ criterion is
applied in the present investigations.

Nomenclature
A amplitude of a Tollmien-Schlichting wave,
field point
cy- drag coefficient
¢4y volumetric drag coefficient
cf skin friction coefficient
a lift coefficient
p pressure coefficient
D body diameter,
drag
f frequency

Hs3s  shape factor

L body length

n amplification factor

Re Reynolds number

Re,  local Reynolds number

Rer  Reynolds number based on body length

Rey  volumetric Reynolds number
Res; Reynolds number based on §;
s arc length
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Tu  turbulence level

U velocity of the basic flow

Ue  velocity at the boundary-layer edge
Usx undisturbed freestream velocity

|4 body volume

z,7 coordinates of the cylindrical system

a; amplification rate

a, wave number

& displacement thickness

Az; length of the i** source section
® eigenfunction

v kinematic viscosity

p density of the fluid

w circular frequency

w dimensionless circular frequency

Indices

crit.  critical value

i section number

I value at the primary instability point
tra  transition point

|4 quantity based on body volume

1 Introduction

Drag reduction by laminarization of the boundary
layer plays an important role in aerodynamic aircraft
design.(*) For example, the high performance of cur-
rent sailplanes can only be obtained by extensive la-
minar flow regions on suction and pressure sides of the
wing. With the application of laminar airfoil sections
the drag contribution of the fuselage will achieve a sig-
nificant amount.

For the aerodynamic design of three-dimensional
fuselages with low skin-friction drag, laminar bodies
of revolution are often used as a basis. Therefore, an
important aerodynamic task is to find axisymmetric
body shapes which show extensive laminar flow for a
prescribed design Reynolds number range.

Theoretical and experimental investigations prove
that for slender axisymmetric bodies with an almost
flat pressure distribution only moderate local Reynolds
numbers at the transition point can be achieved. Early
Northrop flight tests(!5) yield transition Reynolds
numbers up to Re,, . = 4.5-10° for an ellipsoid with
a fineness ratio of L/D = 9.
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To increase Reg,,,, the favourable pressure gradi-
ent in the forebody region has to be enlarged. This can
be realized by reducing the fineness ratio. Such a body
shape with a small length-to-diameter ratio was inves-
tigated by Carmichael® by means of drop tests carried
out in the Pacific Ocean. For the examined Dolphin
body with L/D = 3.33, a reduction of the volume-
tric drag coefficient of up to 60% could be achieved
compared to turbulent standard torpedo shapes. This
indicates the existence of extensive laminar flow re-
gions for the investigated Reynolds number range up
to Rey = 40 - 10%. Further experimental research on
natural lJaminar flow (NLF) bodies was conducted for
example by Hansen & Hoyt.(17)

For the design of low-drag shapes both inverse
calculation procedures as well as analysis methods
coupled with optimization algorithms are generally
used. Zedan et al.9) applied an inverse potential
method based on a doublet singularity distribution
on the body axis coupled with an integral boundary-
layer procedure. Numerical shape optimizations for
the incompressible case were presented by Parsons
et al,39) Dodbele et al.,( Coiro and Nicolosi®
or Pinebrook,®!) for example. With the exception
of Pinebrook, these authors employed direct analysis
methods to calculate of the inviscid flow field. The
potential methods are coupled with integral or finite-
difference boundary-layer procedures to account for
viscous effects. For the purpose of numerical shape op-
timization, high computational efficiency is required.
Therefore, the displacement effect of the boundary-
layer is usually neglected and empirical criteria are
employed to determine the transition point.

As pointed out by various authors(®7-9:40) the de-
termination of the transition location by means of em-
pirical criteria is the weakest link in the aerodynamic
analysis of NLF geometries. Because the optimiza-
tion process of laminar shapes is mainly influenced by
the transition prediction, totally different geometries
could result depending on the used criterion. For the
shape optimizations presented in this paper, a semi-
empirical e™ criterion based on linear stability theory
was applied. The e” method is expected to show more
consistent results than empirical criteria. An indirect
potential method is used to compute the outer flow,
and an integral procedure serves for the calculation of

the boundary-layer development. A hybrid optimizer

as well as an evolution strategy were coupled with the
aerodynamic model. The coupled tool was applied for
the shape optimization of axisymmetric NLF bodies
for a variety of design Reynolds number regimes. In
this paper, the fundamentals of the optimization tool
will be summarized. Furthermore, optimization results
of body shapes with minimized volumetric drag coeffi-
cient will be presented. The problems connected with
simplified prediction of laminar to turbulent transition
are discussed in more detail.

2 Problems of Transition
Prediction

Transition Process

Laminar to turbulent transition is a complex and

vet not fully understood phenomenon. Basic transi- -

tion research mostly deals with physical mechanisms
occuring in two-dimensional, incompressible attached
boundary layers under controlled conditions. It is
assumed that natural transition is caused by simi-
lar mechanisms. Excellent and detailed descriptions
of the present knowledge in boundary-layer transition
are given for example by Arnal,(!) Kachanov(?3) or
Saric.(¥) Here, only the most important phenomena
are summarized. -

At low freestream turbulence level sound or vorti-
city perturbations entering the boundary layer, are of
small amplitude. In the region of the forward stagna-
tion point the laminar boundary layer is stable against
these disturbances, i. e. the perturbations are damped
in that region. Downstream of the primary instability
point, the basic flow becomes unstable against fluctu-
ations and the amplitude of the disturbances grows in
downstream direction.

When the disturbance amplitude exceeds a certain
value, nonlinear interaction of 2D and oblique waves
occurs. This secondary instability initiates the sub-
sequent stages of the transition process. In the last
stage, turbulent spots occur imbedded in the laminar
basic flow. The size of the spots increases in down-
stream direction until they grow together and form a
fully turbulent flow.

A correct theoretical calculation of the controlled
transition process is only possible with direct nume-
rical simulations(®*2%32) by solving the complete un-
steady Navier-Stokes equations. Enormous computa-
tional effort is required for a single analysis.

Empirical Transition Criteria

In order to predict the onset of transition during the
aerodynamic design process, a strongly simplified theo-
retical approach is needed. Because of their computa-
tional efficiency, empirical local criteria are often em-
ployed. These criteria represent correlations of integral
boundary-layer parameters at the transition point. An
overview of existing transition criteria is given for ex-
ample by Arnal.(t)

As pointed out by Dodbele(®) empirical criteria are
usually based on two-dimensional correlations for low
Reynolds numbers and extrapolated to higher regimes.
The scope of these empirical criteria is therefore ex-
pected to be limited. Several investigations demon-
strate that a wide range of predicted transition loca-
tions can be found with different criteria.®”) This is
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especially true for slender geometries with a flat pres-
sure distribution.

Zedan et. al.(*0) compared results obtained with
the Michel e®, the H — R, the Crabtree and the
Granville criterion for the Hansen & Hoyt laminar
body shape.!”) For Rey = 4-10° a transition lo-
cation of z¢r, /L = 0.361 was found with the Granville
criterion. In contrast, no transition upstream of lami-
nar separation at z/L = 0.677 was indicated by the
Michel and the H — R, criterion. Such large discre-
pancies result in significant differencies with respect to
the calculated drag coefficient.

Empirical criteria were also tested by Dodbele
et. al.(") to determine the transition point of the X-35
low-drag body. For Rey = 37.14-10° the examined cri-
teria yield transition locations between zy,., JL =0.25
and z4/L = 0.68, which corresponds to the laminar
separation point. A linear stability analysis using the
SALLY code was performed for comparison. Assuming
a value of n.;. = 9, transition onset was determined
at Tiro/L = 0.185 according to the e® method.

A further comparison of different transition crite-
ria was reported by Coiro and Nicolosi.(5) The body of
interest shows a long region with favourable pressure
gradient and has been examined for Re; = 40 - 108.
Again, a large discrepancy between different correla-
tions results. The authors concluded that for accurate
transition prediction a linear stability analysis should
be performed. They also refer to the fact that such an
analysis requires a lot of computational time and there-
fore may be impractical for the purpose of numerical
optimizations. An alternative is offered in form of a
data-base method as described in Section 3.3.

Linear Stability Theory

Semi-empirical transition criteria, such as the e"
method, consider the physics of the first transition
stage. This first stage is characterized by an ampli-
fication of the Tollmien-Schlichting waves which can
be calculated by means of the linear stability theory in
very good agreement with experimental results.
Within linear stability theory the boundary-layer is
separated into a steady basic flow and an unsteady dis-
turbance. Furthermore, local parallelism is assumed.
The basic flow represents a steady solution of the

Navier-Stokes equation. A harmonic wave approach

is chosen for the disturbance. Substitution of this ap-
proach into the complete Navier-Stokes equation, eli-
mination of the pressure variable and linearization re-
sults in the well-known Orr-Sommerfeld equation. For
two-dimensional flows, this equation can be expressed
in the following form:(29)

(D? —?)’ ¢ = iaRe [(U-2) (D* - o?) - DU|p

where D = i
dy

In the Orr-Sommerfeld equation, ¢ represents the
complex amplitude function of the disturbance, being
dependent on the wall normal distance y. In general,
« and w are complex and the above equation describes -
the growth of two-dimensional harmonic disturbance
waves in time and space. If w is introduced as a com-
plex and « as a real quantity, only the time-dependent
growth is considered. In contrast, spatial amplification
is determined with a real circular frequency w and a
complex a. In the last case, the real part o, represents
the wavenumber and its imaginary part o; the ampli-
fication rate. Negative values of ; indicate a spatial
amplification, whereas positive values mean decay of
the perturbation wave amplitude. The instability de-
pends on the disturbance frequency, the local Reynolds
number and the boundary-layer profile.

Semi-empirical e Transition Criterion

The e" criterion was independently developed by
Smith & Gamberoni®*®) and van Ingen.(!) With the
e™ method it is assumed that the region of nonlinear
amplification is short compared to the region of linear
instability. In this case, linear stability theory can be
applied to derive predictions about the onset of tran-
sition.

First, the development of the laminar boundary-
layer has to be calculated. Then, a stability analy-
sis must be performed by solving the Orr-Sommerfeld
equation in the unstable region. This has to be done
for different frequencies of the perturbation waves.
Usually, no oblique waves are examined in the case
of two-dimensional boundary-layers. For each distur-
bance frequency, the spatial amplification rates o;(f)
are integrated along the arc length s:

_ A
n(f)—lnAI(f) ——/SI a;(f)ds

The resulting amplification factor n represents the
logarithmic ratio of the local disturbance amplitude A
to the fictive amplitude A; at the primary instability
point.

With the e” criterion, transition is assumed if the
n-factor of the most amplified frequency reaches a cer-
tain critical value ngq:.. The corresponding location
Scrit. 1 determined by evaluating the envelope of the
calculated amplification curves, see Fig. 1. The value
of n¢ri. depends on the freestream conditions and the
definition of the transition point (onset of transition
or end of the intermittent region). Mack(?®) and van
Ingen(22) presented correlations for ng.. as a function
of the freestream turbulence level.
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Figure 1: Principle of the e” method

Note, that with the e™ method only an amplitude
ratio of the disturbance waves is evaluated. The pro-
cess of receptivity and the magnitude as well as the
spectral distribution of the initial perturbation am-
plitude is not considered. The assumption of local
parallelism and the neglection of nonlinear effects are
further simplifications of the real transition process.
Nevertheless, comparisons with transition experiments
show that for two-dimensional boundary-layers the e®
.approach yields better results than existing empiri-
cal criteria.(!%37) However, the method fails if large-
amplitude perturbations enter the boundary layer and
the linear stages of the transition process are bypassed.

The linear stability theory and the e method, as
described, have been derived for an incompressible
plane flow. Nevertheless, if the boundary-layer thick-
ness is much smaller than the body radius, this ap-
proach can be applied for axisymmetric boundary lay-
ers as well.

e™ Envelope Method

A drastic reduction of the computational effort can be
achieved with the e™ envelope method according to
Gleyzes et. al.(1¥) and Drela.(1®) With this approach
the amplification curves of self-similar boundary-layer
profiles are calculated in advance. The corresponding
envelopes are approximated by straight lines and repre-

sented as a function of the shape factor. During actual _

transition calculations, these correlations are used to
determine the n-factor.

Information about the dependency of the amplifi-
cation on the perturbation frequency is lost with this
simplified approach. It can be shown that a systematic
error in the calculated n-factor results if a boundary
layer with varying shape factor is examined.(®® This
might be the reason why comparisons with transition
experiments®”) show greater differences for the enve-
lope approach than for the original €™ method.

3 Aerodynamic Model

3.1 Outer-Flow Computation

For the present investigations, potential-flow methods
were used to calculate the inviscid flow field about ax-
isymmetric bodies submerged in incompressible fluid. )

To solve the direct problem, i. e. to calculate the
velocity distribution for given geometries, a low-order
panel method is applied. At zero incidence only the
displacement effect of the body has to be considered.
Therefore, it is sufficient to introduce a source distribu-
tion on the body surface. The singularity strengths are
determined by application of the external Neumann
boundary-condition at discrete collocation points. A
modified Bézier spline is used to.interpolate geometry
and velocity distribution and provides the input data
for the boundary-layer calculation. If required, the dis-
placement effect of the attached bbundary layer can
be simulated by means of the transpiration technique.
This necessitates an iterative procedure.

During the shape optimization process the inviscid
flow field is calculated by means of an efficient indi-
rect method based on a singularity distribution on the
body axis. The present approach employs a source
distribution varying linearly by section, as proposed
by Zedan.®®) With a singularity distribution being
specified, the corresponding potential and streamfunc-
tion values can easily be determined.®”) The velocity
vector at an arbitrary field point results from differ-
entiation of the streamfunction resp. the velocity po-
tential. Because the body surface is identical to the
stream surface, the defining equation for the contour
is obtained by setting the streamfunction to the value
at the stagnation points. The resulting equation has
to be solved iteratively. '

In order to generate body shapes of finite length,
the closure condition has to be satisfied. This condi-
tion implies that the integral of the source strength
has to be zero at the body tail. To avoid improper
solutions, it is further neccessary to prevent negative
values of the source strength integral within the singu-
larity distribution.

Not all imaginable shapes can be modeled by means
of a singularity distribution on the body axis. Geome-
tries with small curvature radii in streamwise direction
or bodies with a fineness ratio of L/D < 1 have to be
excluded. It is assumed, however, that the relatively
slender low-drag shapes can be generated with the in-
direct approach.

3.2 Boundary-Layer Method

A first-order integral procedure according to Eppler(1)
is applied to calculate the boundary-layer develop-
ment. This method was developed for the compu-
tation of incompressible attached boundary layers on
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airfoil sections.*?) The approach is based on numeri-
cal integration of the integral momentum and energy
equation. The laminar closure is derived from Falkner-
Skan profiles in regions with adverse pressure gradient,
whereas velocity profiles with suction are the basis in
accelerated flow regimes. For turbulent boundary lay-
ers empirical relations are employed. The boundary-
layer method has been expanded for the calculation of
axisymmetric flows.

The empirical transition criterion used by Eppler
has been replaced by a semi-empirical e® method as
described in the following section. In the present in-
vestigations, laminar separation bubbles are not con-
sidered. If laminar separation occurs upstream of tran-
sition, the method switches to turbulent closure con-
ditions at the separation point.

The drag coefficient is determined using Young’s
formula,(®) which is based on the integral boundary-
layer parameters at the body tail. With this for-
mula, the skin friction as well as the form drag of the
boundary-layer are considered. The equation of Young
can be evaluated along the arc length s of the exami-
ned body. Depending on the boundary-layer method,
different qualitative behaviour of the ¢4(s)-curve can
result, as discussed by Hess.(!8) With the present inte-
gral procedure the maximum of the c4(s)-distribution
in the region of attached turbulent flow is attributed
to represent the drag of the body. During the shape
optimization process, a penalty function is introduced
to account for the additional drag in case of turbulent
separation.

3.3 Transition Prediction

The e™ criterion (see Section 2) is employed to deter-
mine the transition location with the analysis as well
as the design method. In the present implementation,
the amplification of 2D-waves in an incompressible ba-
sic flow is computed by direct solution of the Orr-
Sommerfeld equation according to the spatial theory.
The integration is performed by means of an itera-
tive shooting method in combination with a classical
Runge-Kutta scheme. A Gram-Schmidt orthonormali-
zation is applied in order to enable a solution for high
Reynolds numbers.

To perform a stability analysis, the boundary-layer

profile and its first and second derivative are needed.

However, with the employed boundary-layer procedure
only integral parameters are calculated. Therefore,
the required velocity profiles are determined from a
polynomial approximation of the Falkner-Skan profiles.
The shape factor Hs; serves as a coupling parameter.
As can be seen from Fig. 2 no significant differences
with respect to the calculated amplification rates re-
sult from the approximation of the exact profiles.

For the family of the approximated Falkner-Skan
profiles a non-ambiguous relation between the local

020 ——r—r——
I Polynomial approximation of the Blasius profile
—-— Exact Blasius profile -
+  Exact Blasius profile, results Arnal @
0.15 |- E
©*
0.10 |-
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0.00 L ) L . i ) ) . : i . . : .
2.5 3.0 3.5 4.0

log,, (Res,)

Figure 2: Stability diagram for the Blasius flow

Reynolds number and the shape factor at the primary
instability point was established. Within actual tran-
sition calculations this correlation is used to deter-
mine the location of the instability point. Stability
analysis then only has to be performed in the unsta-
ble region. This is done for a multitude of different
physical perturbation frequencies at each coordinate
point. To avoid superflous stability calculations, the
analysed frequency spectrum is adjusted dynamically.
This means that a specific frequency f is examined
only if the amplification rate a;(f) is negative or the
total amplification factor n(f) is greater than zero. Fi-
nally, the envelope is evaluated for the resulting ampli-
fication curves. Transition is assumed at the position
where the envelope exceeds the specified value of ..

Transition prediction based on a direct solution of
the Orr-Sommerfeld equation requires too much com-
putational effort for the purpose of numerical shape
optimization. For this reason, a database method was
implemented, which can be used alternatively. To ge-
nerate this database, the amplification rates o; for 27
shape factors at 40 different Reynolds numbers and
40 different frequencies were calculated in advance.
In order to enable the determination of a descend of
the amplification curve, highly damped regions were
also considered. During actual transition calculations.
the required value of ; results from interpolation of
database values. This simplified approach is robust
and shows almost identical results compared to an ex-
act calculation.

3.4 Validation Examples

The aerodynamic model has been verified with res-
pect to drag prediction by comparison to experiments
known from literature. For the case of forced transition
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the water tunnel tests conducted by Gertler('3) consti-
tute an excellent basis for the validation. Boundary-
layer measurements with natural transition, however,
are hardly known for axisymmetric bodies at high
Reynolds numbers. An exception to this represent the
experiments on a slender prolate ellipsoid (L/D = 9)
as reported by Groth.(!®) Fig. 3 shows the transi-
tion location vs Reynolds number as resulting from
the corresponding F-94 in-flight tests. Good agree-
ment is achieved with the present calculation method
if a critical amplification factor between 9 and 11 is
specified. This value of nc,i. is lower than the one re-
sulting from more recent in-flight tests(2) on a laminar
glove of an aircraft wing (nri. ~ 13.5). The difference
might be attributed to engine sound disturbances re-
lated to the F-94 flight tests. These disturbances cause
an upstream shift of the transition location as noted
by Dodbele.(”

1.00 — —— — :

Present theory, e"-method
° Northrop F-94 fiight test '

0.80 - \‘ - —— — Ames windtunnel
\

0.60 |
X,/

0.40

T

020}

0,00 bt
0.0x10

] " 1 n 2 1 ]
1.0x10° 2.0x107 Re 3:0x107 4.0x10"
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Figure 3: Transition location of the Northrop 1:9
ellipsoid (Exp. data taken from Carmichael(*))

Fig. 3 furthermore shows the experimental results
obtained in the Ames low turbulence wind tunnel.
The predictior is in good agreement for n.y. = 9.
Differences occur only for Rer, < 5 - 10°%, which
might result from the neglection of the boundary-layer
displacement-effect within the present calculations.

As a further validation example, the calculated

drag curve for the R 101 airship body is given in .

Fig. 4. In the 40’s, experimental investigations for
this shape were conducted independently by Jones and
Schirmer.(®®) Schirmer performed his measurements in
the wind tunnel of the former Zeppelin company. For
this tunnel, a turbulence factor of 1.35 is reported.(35)
This corresponds to a turbulence level of Tu =~ 0.45%
for which a critical amplification factor of ng.; = 5.7
results from the correlation according to van Ingen.(2?)
The calculated drag curve for that value of n.r;. shows
satisfactory agreement with the experimental results.

0.05 T

! Present theory, "-method (n_,, =5.7)

[ — — — Present theory, forced transition at x/L.=0.01
0.04 [ - Experiment Jones (Teddington windtunnel) ]

————— Experiment Schirmer (LZ windtunnel)
S~ ~ -
0.03| S~ .
S— -~ —_

Cy ~ -
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0.00 : L : s
10° 10° Re, 107

Figure 4: Drag curve for the R101 airship body
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0.03| ]
Cy =5 S

1 - - S —
0.02| = -

0.01}

0.00 — : — —
10° Re, 10

Figure 5: Drag curve for the Hansen & Hoyt body

Finally, the calculation results obtained for the la-
minar body of Hansen & Hoyt(” are depicted in
Fig. 5. The agreement found between computed and
measured drag curve with natural transition is satis-
factory. For Rey = 4-10° a drastic increase of the de-
termined drag coefficient can be observed. This results
from an abrupt upstream jump of the predicted tran-

sition location. The experiments show a more gradual --

drag rise. For the low Reynolds number regime lam-
inar separation bubbles are indicated by the theory.
The calculated drag curve is not plotted for this re-
gion since the bubble drag is not considered within
the present aerodynamic model.
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4 Optimization Procedure

The aerodynamic calculation method was coupled with
different optimization algorithms in order to perform
numerical shape optimizations of NLF bodies. The
objective was to minimize the drag coefficient for a
specified design Reynolds number regime. This opti-
mization problem involves special requirements for the
optimizer.

With the present aerodynamic model the gradient
of the objective function (drag coefficient) cannot be
determined analytically. Furthermore, it is expected
that the objective function is multimodal, i. e. shows
more than one minimum. As an additional difficulty,
a complex topology of the objective function arises
for bodies with maximized laminar flow regions: In
the vicinity of the optimum, even smallest variations
of the design variables can trigger an upstream jump
of the predicted transition location. This leads to
a drastic increase of the calculated drag coefficient,
which corresponds to a jump of the objective function
value. The optimization algorithm must therefore be
efficiently applicable to such multi-dimensional, multi-
modal and nonlinear objective functions.

For the present investigations, a commercially
‘available hybrid optimizer (POINTER) was applied.
This tool enables constrained optimization and con-
sists of a combination of genetic algorithm (GA),
downhill simplex and a gradient method. A search
procedure suitable for the optimization task at hand is
chosen by means of automated training sessions with
the desired optimization time being specified.

As a second optimization tool, an (1, 30)-evolution-
strategy is employed. This optimization algorithm
takes reference to the biological evolution process.(33)
Mechanisms such as recombination, random mutation
and selection are adopted to generate new design vec-
tors from a given pool of inital designs. Of crucial
importance for the success of an optimization process
is the self-adaption of the step-size which is used for
mutation of the design variables. For the present op-
timizations a covariance matrix adaption(!®) was ap-
plied. With this method the mutation distribution
is adjusted according to the selection information re-
quired along the entire evolution path.

The input parameters of the indirect potential

method (see Sec. 3.1) are chosen as design variables

to be varied by the optimizer. This approach is essen-
tially similar to the one used by Pinebrook.1) For
the present examples, the lengths Az; of 20 source
segments were optimized along with the corresponding
singularity strengths at the section boundaries. In or-
der to ensure a continous singularity distribution, the
source strength at the end of each segment boundary is
set equal to the value at the beginning of the following
segment. A logarithmic scale has been introduced for
Az; to prevent negative section lengths.

The source distribution as generated by the opti-
mizer is superimposed by a parabolic correction dis-
tribution in such a way that the closure condition is
fulfilled. An exact realization of that condition is nec-
essary to enable the determination of the rear stag-
nation point. Negative values of the source-strength
integral within the singularity distribution are avoided )
by using proper constraints during the optimization
process.

5 Results and Discussion

As a first example, the shape optimization for a sin-
gle design point is presented in order to illustrate the
optimization process from a bad initial design to a low-
drag shape. With this optimization, the objective was
to minimize the drag D for a given body volume V
and a prescribed airspeed U,,. During the investiga-
tion of this question the following non-dimensionalized
quantities have to be introduced:

_ D
Cdy = gUgovz/g

In the first example, the volumetric drag coefficient
cd4,, Was chosen as objective function to be minimized
for a volumetric Reynolds number of Rey = 1 - 107.
The optimization was performed assuming natural
transition with a value of n.,;. = 9 being specified for
transition prediction. Because of the large number of
restarts and different algorithms used, the hybrid op-
timizer is not well suited for the illustration of the op-
timization process. Therefore, the evolution strategy
as described in the last section, was employed for this
example. It should be noted that no geometric con-
straints were introduced. Therefore, the optimization
process is driven solely by the aerodynamic objective
to minimize drag.

The specified initial source distribution corresponds
to an ellipsoid-like starting geometry with a fineness
ratio of L/D = 2.3. Fig. 6 depicts the shape and the
inviscid pressure distribution for this body as well as
the skin-friction on the surface. The body shows early
transition and furthermore turbulent flow separation
which leads to a high drag coefficient.

At the beginning of the optimization process, de-
signs with a pointed tail were selected (generation
40). Boundary-layer separation is prevented with these
geometries. Then, the maximum thickness point is
shifted downstream in order to delay transition (gen-
eration 500). Furthermore, a steep pressure recovery
is introduced downstream of transition to reduce the
wetted surface area and the skin-friction in the turbu-
lent region.
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Figure 6: Optimization process of an axisymmetric
body with minimized volumetric drag coefficient
(Design point: Rey = 1-107)

Additionally, the development of the objective
function value cg, is plotted in Fig. 6. A steep decrease
can be observed within the first 500 generations. Then,
no considerable improvement occurs up to generation
2000. Remarkable jumps of the cq,-value are obvious
in that stage of the optimization process. Here, the
laminar flow length is already maximized. Small geo-
metry modifications in the forebody region result in a
significant upstream jump of the predicted transition
point and cause a drastic increase of the drag coeffi-
cient. At about generation 2500, the drag curve shows
a steplike decrease. This indicates a successful adap-
tion of the covariance matrix, which leads to a high
convergence rate of the optimization process.(16)

Previous investigations(*®) showed that one-point
optimizations for a single Rey lead to bodies which
are inconvenient for practical application because they
show bad characteristics outside the design point. This
is especially true for laminar bodies at low Reynolds
numbers. Therefore, NLF shapes for a whole Reynolds
number range were optimized with the mean value
of the drag coefficient c4, chosen as objective func-
tion.(*”) This was done for five different design regimes
(see table 1).

Table 1: Design regimes

| Regime [ Rey. | Rey.. | nerie. |
I 1-108 3.16 - 108 9
IT 3.16 - 10° 1-107 9
111 1-107 3.16 - 107 9
v 3.16- 107 1-108 9
A% 1-108% 3.16 - 108 9

The starting geometry for design regime I corres-
ponds to the ellipsoid-like shape as depicted in Fig. 6.
First, an optimization run with the POINTER opti-
mization tool was carried out. Thereafter, a further
run with the evolution strategy was performed. This
procedure was repeated for design regime IT - V, taking
the optimized geometry of the previous range as start-
ing geometry. For each run with the evolution strat-
egy, 10.000 generations were chosen which correspond
to 300.000 designs with the employed (1, 30) strategy.

The resulting drag curves for all optimized body
shapes are depicted in Fig. 7. These computations do
not take the additional drag due to laminar separation
bubbles into account. It can be seen that the bodies
show a very low volumetric drag coefficient inside their
respective design regimes. If the Reynolds number is
increased slightly above the design region, an abrupt
increase of the drag coefficient can be observed. This
is caused by an upstream jump of the predicted transi-
tion point. Below the lowest design Reynolds number,
laminar separation without reattachement is indicated.
The drag curves are not plotted for this regime.
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Figure 9: Minimum pressure position
of the optimized body shapes

An evaluation of characteristic igeomet_ric parame-
ters of the optimized shapes is given in Fig. 8 and

9. The body optimized for design regime I shows
a relatively high fineness ratio (L/D = 4.61) and a
far aft location of the minimum pressure coefficient.
With increasing design Reynolds number the amount
of favourable pressure gradient in the forebody region
has to be enlarged in order to delay transition. This
can be realized either by increasing the body diameter
or by shifting the maximum thickness point upstream.
However, enlarging the body diameter is limited by
the maximum pressure recovery being possible with-
out turbulent separation. Fig. 9 shows that for the
optimized body shapes the ¢, ,, location is shifted
continously upstream with increasing design Reynolds
number. In contrast to this, a minimum occurs in the
curve of the fineness ratio. This indicates that for huge
Reynolds numbers more slender geometries might be
advantageous with respect to the volumetric drag coef-
ficient. In other words, if the boundary layer is almost
fully turbulent, body shapes with maximum pressure
recovery do not represent an optimal solution.

As an example, the optimization result obtained
for design regime III is presented in more detail. The
contour and the inviscid pressure distribution of this
body is depicted in Fig. 10. The body shows a steep
favourable pressure gradient during the first 50% of its
length. For the Reynolds number range considered,
this is required to achieve extensive laminar flow by
shaping alone.

—1~0 L T L 1

Body Il

T e T
0.0 02 04 4 06 0.8 1.0

Figure 10: Shape and inviscid pressure distribution
of the body optimized for design regime IIT

The amplification curves for the lowest and for the
highest design Reynolds number are given in Fig. 11.
Within this regime, the critical amplification factor
is reached upstream of the laminar separation point.
Therefore, no separation bubbles have to be expected.
For Rey =1-107 significant amplification occurs just
at the beginning of the pressure recovery. In contrast,
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Figure 11: Amplification curves of body III

a strong disturbance growth in the nose region is de-
termined for Rey = 3.16 - 10°. An amplification fac-
tor of n = 6 is reached at an arc length position of
s/L = 0.09. Downstream of this point the n-factor
increases only gradually until transition is predicted
at s/L = 0.45. An almost constant n-factor slightly
below the critical value might result in nonlinear am-
plification in the real flow. If this is true, linear theory
underpredicts the disturbance growth and a transition
position too far downstream would be predicted with
the e™ approach.

6 Conclusion

An efficient aerodynamic calculation method was de-
veloped and coupled with different optimization algo-
rithms. In order to accurately predict the transition
location, an semi-empirical e criterion is employed.
The coupled tool was used for the numerical shape op-
timization of axisymmetric NLF bodies. The ob jective
of the present investigations was to minimize the volu-
metric drag coefficient for different design Reynolds
number regimes. No geometric constraints were intro-
duced.
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