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Abstract

Deterministic optimizers are powerful tools for
solving optimization problems dealing with
smooth, unimodal objective functions. They re-
quire few objective function evaluations, par-
ticularly if compared to stochastic optimization
methods. However, deterministic methods face
serious problems for search spaces with rugged
landscapes.

Genetic Algorithms (GAs) are a stochastic
derivative-free search proceduresrunning on a
natural selection mode. A decisive advantage
for GAs in complex industrial environment is ro-
bustness and simplicity. Indifference to problem
specifics, codings of decision variables, process of
population, randomized crossover and mutation
operators are the main characteristics which con-
tribute to the robustness of GAs.

There are three main sections in this paper.
The first section introduces the fundamentals of
(1) genetic algorithms with binary or floating
point codings and (2) game theory and multi-
ple objective optimization (cooperative and non-
cooperative).

The second section presents two CFD applica-
tions: inverse problem in optimum shape design
for a transonic Euler flow condition using Bezier
spline parametrization of the airfoil population
and lift maximization for a multielement landing
configuration.

The third section deals with single and multi
objective optimization of scattered waves by ac-
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tive control elements. The problem in finding op-
timal distribution of active control elements in
order to minimize the RCS of perfectly conduct-
ing reflectors Electromagnetics. Both problems
are solved by means of Genetic Algorithms via
a fitness evaluation through the solution of the
Maxwell equations corresponding to the RCS of
the radar illumination. Pareto and Nash solu-
tions are computed and compared using a combi-
nation of GAs and Games Theory. It is shown
through numerical experiments that Nash Gas
are faster and more robust than Pareto GAs, al-
though Pareto solutions are better.

Fundamentals of GAs and Games Theory

Introduction to GAs

Despite traditional deterministic optimization
methods have proven to be powerful and fast
tools for solving optimization problems with
smooth, differentiable and unimodal ‘objective
functions requiring few objective function evalu-
ations when compared to stochastic optimization
methods severe difficulties appear when dealing
with highly multimodal functions or non-convex

optimization problems. One of the most power-

ful stochastic alternatives to those methods are
Genetic Algorithms . GAs are blind search
methods based on the mechanics of natural se-
lection and Darwin’s main principle : survival of
the fittest.

The basic principle is a DNA-fitness parallel es-
tablished between an individual and a solution in
the one hand, and between an environment and a
problem in the other : a good solution to a given
problem is an individual likely to succeed in a
given environment. Each individual (i.e. solu-
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tion) has a fitness function which measures how
fitted it is for the environment (i.e. problem), or
in other words how good the solution is.

The most outstanding advantages of GAs are
robustness and simplicity : they are computa-
tionally simple and powerful in their search for
improvement and are not limited by restrictive
assumptions about the search space (continuity,
existence of derivatives, unimodality). Further-
more, they accommodate well with discontinuous
environments and noise and rely on a careful bal-
ance between exploration of the search space and
exploitation of the results.

Binary coding

As mentioned earlier, GAs are different from
the conventional search procedures encountered
in engineering optimization. To understand
the mechanism of GAs, consider a minimization
problem with a cost index J = f(z), where the
parameter is . The first step of the optimization
process is to encode z as a finite-length string.
The length of the binary string is chosen accord-
ing to the required accuracy. For a binary string
of length [ = 8 bits, the lower bound 2,,;,, for the
variable z is mapped to 00000000 and the upper
bound z.,,, is mapped to 11111111, with a linear
mapping in between. Then for any given string,
the corresponding value z can be calculated ac-
cording to: & = Tpin + ilrl(xm,w — Zmin). With
this coding, the initial population is constituted
by N individuals, and each of them is a potential
solution to the problem. We must now define a
set of GA operators that use the initial popula-
tion and then create a new population at every
generation. There are many GA operators, but
the most important are selection, reproduction,
.crossover and mutation. ‘

Selection consists in choosing the solutions
which are going to form a new generation. The
main idea is that selection should depend on the
value of the fitness function: the higher the fitness
is, the higher the probability is for the individual
to be chosen (akin to the concept of survival of the
fittest). But it remains a probability, which means
that is not a deterministic choice: even solutions
with a comparatively low fitness may be chosen,
and they may reveal very good in the course of
events (e.g. if the optimization i§ trapped in a
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local minimum).

Reproduction is a process by which a string
is copied in the following generation. It may be
copied with no change, but it may also undergo
a mutation, according to a fixed mutation prob-
ability Pp,. However, the main way to fill up
the new generation is through the operator called
Crossover.

§ cutste First, two
A 00%01110 001 10016 A" strings are ran-
domly selected
and put in the
mating pool. Second, a position along the two
strings is selected according to a uniform random
law. Finally, based on the crossover probability
F., the paired strings exchange all characters
following the cross site. Clearly the crossover
randomly exchanges a structured information
between parents A and B to produce two off-
spring A’ and B’, which are expected to combine
the best characters of their parents.

B 1115310010 Crossover 1io0i110 B

The last operator, called mutation, is a ran-
dom alteration of a bit at a string position, and
is based on a mutation probability P,,. In the
present case, a mutation means flipping a bit 0
to 1 and vice versa. The mutation operator en-
hances population diversity and enables the op-
timization to get out of local minima.

The main parameters to adjust the convergence
of GAs are the size N of the population, the
length / of the bit string, the probabilities P, and
Pr, of crossover and mutation respectively. Bi-
nary coding is used in the sequel for both the po-
sition of the elements in CFD for multielements
configuration and in CEM for the location of ac-
tive antennas in RCS minimization.

Floating-Point representation

Binary-coded genetic algorithms are very well
suited to combinatorial problems and they facili-
tate theoretical analysis, but the robustness and
implicit parallelism of genetic algorithms does not
depend on the binary representation. There are
various domains where floating-point representa-
tions have given better results .
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Crossover

A two-point crossover for a real-coded ge-
netic algorithm is almost the same as
the one for binary-coded genetic algo-
rithms. Let A = (y1,v2,y3, ¥4, ¥5, %) and
A" = (¥1,¥2, Y3, Y4, Y5, ¥6) be the parents cho-
sen during the selection process. If the first cut
point ¢; is after the 3 gene and the second cut
point ¢, is after the 5'* gene, the crossover of A
and A’ will produce B; = (yia ylz, ys’ Y4, Ys, yé;)
and By = (Y1,Y2,¥3, Y4, Y5, Us)-

All the y; are real numbers and not binary
strings coding real numbers.

Non-Uniform Mutation

Most of the exploration is performed by crossover
operators in binary-coded genetic algorithms.
The exploration is mainly achieved through the
exchange of building blocks. That makes muta-
tion somewhat secondary in most cases. But in a
real-coded representation, crossover cannot lead
to new values of the variables because it is a mere
exchange of floating-point numbers (the cutting
point cannot be within a variable, it is always be-
tween two variables). And that is the reason why
mutation is so important: it is the only way to in-
troduce completely new values for the variables.
Otherwise, the space search would be limited to
a combination of the starting point variables. We
used a non-uniform mutation . If a gene y; is to
be mutated, the new value y! is randomly gener-
ated within the interval [Min;, Max;].

¥i + (Max; — y;).r.(1— %)b if a random
digit is 0

Y% — (y: — Ming).r.(1- %) if a random
digit is 1

Yy =

r is a random number from [0,1],¢ is the the num-
ber of generations,T is the maximum number of
generations, b is the refinement parameter, and
Min; and Max; are the lower and upper bounds
of Yi.

This adaptive mutation offers a clear bal-
ance between exploration and accuracy. At the
first stages of the algorithm, we have o~
which leads to a wide exploration whereas the
last stages are devoted to refinement. Besides
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non-uniform mutation, we also used a Distance-
Dependend Mutation (DDM) which dynamically
computes the mutation rate of the parents ac-
cording to their relative distance 3.

Floating point coding is used in the sequel in
CFD for optimum shape design of airfoil repre-
sented by Bezier splines parametrization.

Games Theory

Introduction

The most obvious way to deal with a multiple
objective optimization problems is to consider a
scalar objective, obtained through a linear com-
bination of the different objectives. However, this
view suffers from several drawbacks. The choice
of the weights associated to each criferion is arbi-
trary, and there is a notable loss of information.
Besides, it is very sensitive to weights modifica-
tions 10,

The best solution seems to be a model which
takes into account all the information without
trying to aggregate it. Such models have long ex-
isted in Games Theory. Games Theory was first
developped in Econonomy, to offer a model for
conflictual situations 16, but it has been succes-
fully applied to a vast range of problems, includ-
ing population dynamics%. Any conflictual situ-
ation is considered as a game, where each player
has to consider his own objective but still keep
at the same time an eye on the evolution of the
whole game. ‘

There are two major families of games: coop-
erative games, such as Pareto games, and non-
cooperative games, such as Nash games.

In the following, each criterion of a multi-

~objective optimization shall be associated to a

player. Let A and B be 2 players, with scalar ob-
Jective functions fa(Z, %) for A and fg(&,7) for
B. A controls all the variables of # and B controls
all the variables of 7. A is the set of strategies for
A and B is the set of strategies for B.

Pareto Equilibrium

The concept of Pareto optimality is the basis on
which is grounded most of cooperative multiple
objective optimizations® . It is based upon the
principle of dominance.
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Figure 1: Pareto GA

For a Pareto game with n players, a strategy
(v1%, .., 9,") dominates a strategy (01, .., vy iff:

Vi’ 1 < ) < n, fi(’v—i*, vy 'U-;L*) < fi(vq, ey v.;z)
3 i such as fi(d1%, .., 0.%) < fi(97, .., O)

For a minimization problem, a strategy (Z*, )

is Pareto optimal if it is non-dominated, or
'in other words if there is no other strategy
(Z,9) € A x B such as f4(Z,9) < fa(&*, ) and
/8@ < fa(@, 7

Sharing and niching techniques are the two
main ingredients to build an algorithm mixing
GAs and Pareto concepts !512. Figure 1 shows
the architecture of such an algorithm.

The main interest of the Pareto approach is
to build a database of optimal solutions. After-
wards, interpolated solutions can be picked up
for Engineering purpose according to the chosen
weights of the criteria.

Nash Equilibrium

Nash optima define a noncooperative multiple ob-
jective optimization approach first proposed by J.
F. Nash®. For an optimization problem with n
objectives, a Nash strategy consists in having n
players, each optimizing his own criterion. How-
ever, each player has to optimize his criterion
given that all the other criteria are fixed by the
rest of the players. When no player can further
improve his criterion, it means that the system
has reached a state of equilibrium called Nash
Equilibrium.

1y
i
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A strategy (£*,7*) € A x B is a Nash Equilib-

rium iff:

Nash equilibria are very difficult to find when
no explicit differentiable function is provided, but
GAs can manage to do it. GAs and Nash strategy
are merged in order to build Nash Equilibrium.

The Nash GA works as follows: let s = XY
be the string representing the potential solution
for a dual objective optimization, where X corre-
sponds to the first criterion and ¥ to the second
one. Player 1 optimizes X (Y is fixed by Player 2)
and Player 2 optimizes Y (X is fixed by Player 1).
Each player is associated to a population. The
Nash equilibrium is reached when neither player
can further improve its criteria. Figure 2 sketches
the Nash GAs approach (see!! for more details).

Optimization of X Y
Player 1 Player 2
Player 1 =Popalation 1 Player 2 = Population 2

X, Yo X, Y,

Gea.0 X, et Y random S -7 X et Y, random
(] a X ~e . ’Y 2
i 8 st e &
> N
4 ‘ - ~

X v ’ ~ x Y

Gen.1 19 ! \ LR
Optimization of X ~ ’ Ophmlsa‘tron deY,
Y, is fixed )E~ ,f X, is fixed
-~ T
- ) -y -
- 1
i 2, -

X Vi ras X =N Ty Y,
Gen.k Optimizationof X, [« s Ophmmtn‘on of Y

Y, is fixed e . X,y is fixed

X~ 27y
| S k
’, REN
X N
A4 g ~ X g
Ganket ik | & %Y,
Optimization of X "l Optimization of Y 1
Y, isfixed X, is fixed

Figure 2: Nash GA strategy

Example of a two-objective optimization

Let player A and B have the following objective
functions: o

fa(z,y) = (z - 1)* + (y - 3)?
fB(z,y) = (z - 4)? + (y — 2)?
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Figure 3: Analytical Equilibrium for Pareto and
Nash Games

Analytical Solution

To build the Analytical Pareto Equilibrium,
we need to introduce the parametric function
fo(z,y), where 0 < A < 1:

fp(z’ y) = )‘fA(x’ y) + (1 - ’\)fB(x’y)

The Pareto optimal solutions are the solutions
of:

3fea!x,y! =0
{ afg(.;#yz —_— 0
9y -

Since A varies in [0, 1], the points Py = (4,2)
and P; = (1, 3) are the extremities of the Pareto
set, which is a line.

Figure 3 shows the contour of functions f4 et
fB along with the analytical results obtained for
the-various multiobjective optimization methods.

The Analytical Nash Equilibrium can be ob-
tained through the intersection of the rational
reaction sets Dy and Dg. D, is the solution
of Yalzw) _ 0, while Dp is the solution of
?ﬂ%yggl = 0. Since Dy is the line z = 1 and Dp
the line y = 2, their intersection gives the Nash
Equilibrium, which is the point Py = (1,2).

Optimization Results

The aim of this subsection is to show that the
analytical equilibria can be found by Pareto and -
Nash GAs, when z and y take their values in
[-5,5] x [~5,5].

Figure 4 shows the results obtained with a
Nash GA. It represents the convergence of the two
populations (i.e. the two players) during the op-
timization process. Player A converges towards
1, whereas Player B converges towards 9. Those

5
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Figure 4: 2 players convergence, Nash GAs
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Figure 5: Pareto Equilibrium, Pareto GAs

results agree with the analytical results, since the
figure shows the convergence on the criteria space
and not on (z,y). We have f4(1,2) = 1 and
fB(1,2) = 9.1t follows that (1,9) can be written
(fa(1,2), f8(1,2)), which corresponds to the an-
alytical Nash Equilibrium Py = (1,2).

Figure 5 shows the result obtained with a
Pareto GA. It also offers a comparison with the
Nash Equilibrium. Let (C;,C,) the coordinates
of a point of the Pareto Equilibrium. There is
a bijection between each (C,,C,) in the crite-
ria space and the points of the line defined by
Py = (4,2) and P; = (1, 3) in the search space.

Pareto and Nash strategies are used in the se-
quel for multiobjective optimization in CFD and
CEM non-convex problems.

Optimum shape design

RAE2822 Reconstruction Problem

We have applied genetic algorithms to the field of
airfoil optimum design because the deterministic
methods that are widely used in aerodynamics
are not really robust towards local optima, even
if they converge faster than GAs 10,

The first problem we present is a reconstruction
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problem: it is an inverse problem that consists in
finding the shape (denoted v) of an airfoil which
realizes a surfacic target pressure distribution for
a given Euler flow condition. This problem can
be seen as the minimization of:

1 ar
J(y) = 5/ [pY — pP*re!|2dy
¥

Where p’*"9¢* is a given target pressure and p”
is the actual flow pressure on 7.

We first compute the pressure distribution for
a given shape thanks to a CFD solver?. Then, we
start the optimization process with another shape
(either a shape corresponding to a given starting
point or a randomly generated shape) and try to
retrieve the first shape. Let n be the number of
discretization points of the profile. The following
discretized cost function f,, (fitness) is used:

]' = ar
faly) =5 D (P — PiTesty?
=1 :

Where P, is the pressure of the evaluated shape
via an’ Euler flow analysis solver and Ptersget
dehotes the pressure distribution of the target
. shape.

We use a seven-order Bezier Spline representa-
tion, which corresponds to two fixed points (one
at each extremity) and six control points. A
Bezier spline Q(¢) of order n is defined by the
Bernstein polynomes B, ;: Q(t) = YoioBniP;
with By, ; = CLt*(1—t)**. P, are the coordinates
of the control points, ¢ € [0, 1], and C} = ﬁ

We define a Bezier spline for the leewarc(i side
and another Bezier spline for the windward side.
The whole airfoil shape is then defined by the
merging of the two splines. For the leeward side,
the Bezier spline is completely determined by the
coordinates P; = (z;,y;) of the control points.
We fix all the z; of the control points P, ... Ps.
The parameters which are optimized are the ordi-
nates y; of those points. We do the same for the
windward side .and we obtain 12 real numbers,
which are the ordinates of the whole airfoil shape
control points. A chromosome C is a vector of
IR'? whose genes are the ordinates of the control
points.

C={y1,Y Yo, Y14 ) Yi € IRN{Min;, Max;]

leewardside windwardside
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Min; and Max; are the lower and upper bounds
of the variable y;.

Dt sy Flram & U4 e bt g P eotrhen precr e

.
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i o gemrdn £ g0 ke - 0 ¢ mbsmtnr)

(a) Shape Evolution (b) Convergence

Figure 6: Reconstruction Problem

For the example (Figure 6), the starting shape
is a NACA642410 airfoil and the target shape is the
RAE2822. The logarithmic convergence evolution
shows that the accuracy of the solution reaches
10~* after only 140 evaluations (14 generations)
13

The same approach can also be used for shock-
drag reduction problems !°. The viscous effects
(coupling of boundary layer with Euler flows) to
reduce the viscous drag are under investigation.

High-lift Multi-element Configuration

High-lift Multi-element systems consist of leading
and trailing edges devices (fig. 7). Leading edges
devices increase the maximum lift of an airfoil
by delaying its stall angle. Trailing edge devices
produce a lift increment. There is an interest
to increase the Cf,,,. at a fixed approach speed
to increase the available payload. Trailing edge
devices (flaps) are often designed to produce a lift
increment while maintaining a high L/D.

The lift coefficient of such a system is the
combination of the lift coefficients of each ele-
ment, and it takes into account their interac-
tion. The quality of the flow around each element
is strongly dependent on their relative position.
Thus, optimizing the configuration can be seen
as a combinatorial problem. Furthermore, the
fitness function variation can be strongly non lin-
ear: the separation point on profiles can move
rapidly from one position to another due to the
wake/boundary layer interaction. The fitness
function is non convex with several local optima.
This is why we selected a GA based optimization
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Problem definition

The physical problem is : Find X* such that
Cp(X™) = max Cr(X), where X denotes the fea-

sible design variable set.

From the initial configuration, the cruise con-
figuration for transonic flow for example (fig. 8),
the high-lift configuration is determined by pa-
rameters which represent the cinematic of the
moving elements. We define three geometrical
design parameters associated to each moving el-
ement: J, the deflection angle, R, the overlap,
and I the gap (fig. 7).

(b) Flap

Figure 7: Multi-element geometry

All geometrical design parameters refer to the
fixed main-element position. We considered two
kinds of optimization for design variables : only
geometrical (for a given angle of attack), or both
aerodynamical (angle of attack) and geometrical
. In the last case, the set of design parameters is:
@,0s, Rs, Fs, 8¢, Ry, Fs. The problem is to find
the solution set (o, 87, R:, F7, &%, R}, Ff) which
maximises Cf,.

Flow Solver

The DAMIEN code is a Dassault Aviation in-
house two-dimensional solver for multi-element
airfoil®®. It has been developed from existing the-
ories coupling inviscid flow® by integral methods
with viscous laminar and turbulent flows (bound-
ary layers).

The main characteristics of this solver include
transition criteria, the treatment of stagnation
line for boundary layer initialization, the treat-
ment of separated zones and the wake/boundary

7
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Parameters 0s, Ry, Fy, 05, Ry, Fy

Fitness CL

Slat variables | 4,:[28;33], R;:[-15;-9.5], F,:[9.5;15]

Flap variables | §;:[-36;-28], R;:[10;18.5], F;:]9;9.6]

Accuracy 106
Pop. size 40
Generations 60

Table 1: Optimization parameters

Slat solution | &, = 28.16°, R,=-10.03, F,=9.58

Flap solution | §; = —35.97°, R;=10.02, F=9.08

Fitness Cp =484

Table 2: Optimization results

layer interaction which have been validated with
numerous ONERA wind tunnel experiments 3.

The DAMIEN flow solver is not differentiable
but is considered as a “black box” for GAs.

Combinatorial Optimisation

A classical binary coded genetic algorithm is used
for the combinatorial optimisation problem, with
elistist strategy, tournament selection, and a two
point crossover.

design(7) oplimisation + local fiap oplimisation

20 r
main element i—
150 shlF— |
100 figp b |
5
0 =
T
-50
-100
-150
-200
100 0 100 200 300 40 500 600

Figure 8: Multi-element Initial configuration

Table 2 presents the results of the GA opti-
mization with 6 parameters (the angle of attack
is fixed). Figure 9 shows the corresponding opti-
mal configuration.

The figure 10 shows that the convergence is ob-
tained after 600 evaluations; that is in agreement
with the design parameter histories. The history
of slat parameters presents an interesting situa-
tion: the GA escapes a local optimum after 15
generations. The Cppa, of the configuration has
been increased to 4.84.

J. Periaux International Council of the Aeronautical Sciences




Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

design(7) optimication + loce! fiap optimisation
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Figure 9: Multi-element Optimal configuration
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Figure 10: Fitness function History Cy,

These 2-D results are destinated to be used in
a 3-D analysis based on Weissmeyer’s theory ap-
plied to determine the lift distribution across the
wing with specific treatment of contamination of
the separation line.

A further optimization is added by local shape
flap modification in order to improve the lift co-
efficient.

Local shape optimisation

s e apermeten $m Ontum Do e ey,

mangenc]t
ey

LA Optmezaten o

S

=
R

ﬁﬁ\

REIN

N

N ]
e o Emtaten

(a) Flap Optimal Shape (b) Convergence

Figure 11: Local Shape Optimum Design

A part of the flap, covered by the main element
in the transonic regime, is represented by a Bezier
spline. The y-coordinates of Bezier control nodes
are the design parameters. We treated this op-
timization task with a real-coded GA (akin the
one used for the inverse problem). Figure 11.a

J. Periaux
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shows the optimized shape of the flap. Figure
11.b represents the evolution of the best solution
during the optimization process, and shows that
the lift coefficient can be improved by local shape
variations of the flap.

The lift value has been incremented from a
value of 4.84 (the result of the previous combi-
natorial optimization) to a value of 5.0047.

To meet real design requirements, one should in
further analysis study a constrained cost function
based on Crq. but also aim at maintaining a
high L/D. Further studies will be undertaken in
a near future in that sense.

Multielement Multiobjective optimization

In this section, we apply Pareto GAs and game
theory introduced at the beginning of the pa-
per to the solution of the high-lift multi-element
optimization. The game involves three players,
namely the flap, the main body and the slat.
This optimization can be seen as a game where
the players try to minimize the local high-lift for
each element, which corresponds to a Pareto equi-
librium in 3D. Although there are three criteria,
we consider only two sets of design variables (for
the flap and the slat) since the main body has
a fixed position: there is no direct link between
the number of criteria and the number of design
variables sets. For a given configuration (an in-
dividual) the local lift around the three elements
can be computed from the flow solver around the
global configuration. '
Numerical experiments of this cooperative ap-
proach show promising results and will be pre-
sented during the course of the conference. This
method offers a choice of alternative solutions (on
the pareto equilibrium) depending on the respec-
tive importance given to each element, i.e. in
function of changing aerodynamic parameters.

Optimal Backscattering

" Problem Formulation

Let us consider a reflecting obstacle R corre-
sponding to an airfoil. OQur aim is to minimize
the Radar Cross Section (RCS) of R, which cor-
responds to the backscattered wave. We suppose
that K active elements can be distributed among
N possible sites on the surface of the airfoil. Each
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active element generates a wave which is likely to
minimize the effects of reflection. Practically, the
surface R of the obstacle is divided in N differ-
ent panels P;, each one corresponding to an active
element which may be active or passive. Due to
the linear properties of Maxwell equations, the
global electromagnetic field backscattered by the
airfoil can be computed by linear combinations of
the elementary solutions of Maxwell equations.

Representation

£1000000111001110,

Lot AL LSS S LUK
- .,
it o "o

TEETTTERT 2

Figure 12: active elements for NACA0012

The problem consists in finding the optimal
distribution of K active elements among N possi-
ble sites. Since each element can be either active
or passive, a straightforward binary representa-
tion for the GA can suit very well the problem.
For example, if we want to distribute 7 active
elements among 17 possible sites, we can code
the position of the active elements with a binary
string of length 17, with the 0 corresponding to a
passive element and the 1 corresponding to an ac-
tive element. Let s = z125..717 be such a string.
We’ll have the following constraints :

17
Zx,—:?withxi:Oor:ci:l

=1

Furthermore, we consider only feasible solu-
tions by applying constraints to both crossover
and mutation.  The cut sites are selected
among the ones that will respect the constraint
SN, 2z = K for the two produced offspring. In
the case where the reflector is a NACA0012, fig-
ure 12 corresponds to the mapping between string
representation 01000000111001110 and the phys-
ical location of the active elements 1.

Fitness Evaluation

For a given radar illumination the signature of
a reflector can be computed via the solution of
time periodic solutions of the Maxwell equations.
A solution method based on exact controllability

9
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techniques advocated in J.-L. Lions’ HUM ap-
proach can be found in !. Fitness evaluations
are then computed through the solutions of the
Maxwell Equations.

active elements are characterized by several pa-
rameters, among others phases and amplitude,
which can be tuned. A trivial approach consists
in solving the following embedded minimization
problem : Min, Min(A;,4,,..}J(z, A, ¢.,..),
with Ak, ®; € IR?, z a boolean vector of dimen-
sion NV and :

Y Vi={1,.,N}z=0o0r1
z = {Zz}z=1..N and { ZzNzl z=K

The vector z represents the distribution of the
active elements on dR. A, and ¢, represent the
amplitude and phases of the elements of z.

In order to compute the reflector’s RCS, we
linearly combine the scattered wave correspond-
ing to elementary solutions of Maxwell equations,
where each elementary solutions is associated to
an active element. The data needed to compute
the RCS, namely the backscattering of the radar
illumination and all the elementary solution for
each active element, are computed once and for
all, and stored. That approach is made possible
by the linear properties of Maxwell equations.

Practically, the surface R of the obstacle is
divided in N different panels P;, each one corre-
sponding to an active element. The contribution
of each P; active element to the global electro-
magnetic field backscattered by the obstacle R
corresponds to the solution of Maxwell equations
with the boundary equations: 4;6; (z)e!(“+4:) | In
this expression A; denotes the amplitude coeffi-
cient, #;(z), 0 < 6 <1 a form function equal to 0
out of P}, ¢; the phases angle, and w = 2—1’5 with
T the period of the radar illumination.

The global scattered field can the be expressed
as :

N
U = Uinc + Z zZ; uea,‘(Ai7 0i3 ¢2)
i=1 (1)

It is a non differentiable problem, and its com-
binatorial properties make it a good candidate for

GAs.
Single Objective Optimization

J. Periaux International Council of the Aeronautical Sciences
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Figure 13: Optimal Solution, BINACA0012

Figure 13 presents the results of a single ob-
Jjective optimization on a BINACACO12. There are
34 potential sites, and 6 active elements to lo-
cate. The obstacle is illuminated by a 0° incident
wave and the RCS is minimized in a 10° sector
centered on the incident angle. The GA needs
15000 evaluations to find the optimal distribution
(exhaustive search= C§, = 1344904). Figure 13
shows that the RCS has dramatically decreased
in [-10°,109].

Application to Optimal Backscattering

We consider that the BINACA0O12 might be illu-
minated by either a —45° a +45° incident waves.
The optimization task consists in finding the best
distribution in order to cope as well as possible
with both cases. The first criteria ¢! is the RCS
computed for « € [—-35° —55°]. The second crite-
ria ¢? is the RCS computed for o € [+35°, +557].
The problem consists in finding a distribution
which is a compromise between both criteria ¢!
and ¢

For the Nash approach applied to the RCS op-
timization of a BINACA0012, Player 1 is the upper
NACA0012 and Player 2 is the lower NACAQ012.

The optimal distributions obtained by Pareto
and Nash are compared in figure 14 . Since there
is a single Nash solution and 23 solutions on the
Pareto Front, we have taken the Pareto solution
for which ¢! = ¢2. The comparison shows that the
Pareto solution is slightly better than the Nash
solution (figure 15).

Pareto GA needs on average 195000 evalua-

tions to converge ngo_q ~ 8400 evaluations for
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Figure 15: Comparison and Nash Convergence

each solution). Nash Equilibrium is reached af-
ter only a total number of 4000 evaluations (fig
15.b) on average for both players. The main con-
clusion is that even if Pareto GAs yields better
solutions, Nash GAs are faster. Besides, Nash
GAs are more robust towards small variations of

the criteria !,

CONCLUSION

GAs are simple and robust search methods for
capturing global solutions of non convex opti-
mization design problems. They surpass classical
methods for solving CFD problems with integer,
discrete and smooth design variables such as the
high lift design of a multi-element configuration.
The cooperative Pareto or competitive Nash GAs
are capable of solving distributed multi criteria
optimisation problems such as the RCS minimi-
sation of scattered fields with active aerodynamic
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reflectors in CEM.

The optimization problems presented in this
lecture illustrate the robustness of Genetic Algo-
rithms for the design of new aerospace products
of increasing complexity.

However many important problems related to
fast computation of fitness functions, flexible
parametrization of design variables, complicated
physical modelling are still open.

Another promising feature of GAs merged with
Game Theory is the development of a new design
concept based on distributed optimization imple-
mented in a parallel environment.
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