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Abstract 1 Introduction

The objective of the work described in this article is
to conduct a detailed comparison of parallel and non-
parallel stability results with experimental measure-
ments. To this end, two stability analysers are used:
the first one is based on the linear, three-dimensional,
parallel stability equations (Orr-Sommerfeld problem)
while the second one solves the incompressible Para-
bolised Stability Equations (PSE). The PSE formula-
tion takes into account the variations of the mean flow
and disturbance quantities in the principal direction
of the flow (typically the chordwise direction) which
are neglected in the parallel approach. In the PSE
approach, the amplitude of a perturbation can be re-
lated to a “physically measurable” quantity, a possibil-
ity that does not exist with the parallel stability the-
ory. It is therefore expected that the PSE results may
provide a better reproduction of some experimentally-
observed features than has so far been obtained using
the parallel theory. In this article, fluctuation spec-
tra obtained by the OS and PSE approaches on the
ONERA D and AFVD 82 swept wings are compared
to hot-wire and hot-film experimental data. On the
AFVD 82 wing, the theoretical spectra predicted by
the PSE approach are indeed in much better agree-

The prediction of the location of transition from a
laminar flow to a turbulent one plays a fundamental
role in the analysis of the flowfield around most con-
figurations of engineering interest. The linear stability
theory, in its “classical”, Orr-Sommerfeld (OS) form,
has been extensively used for that purpose. A com-
prehensive review of the capabilites and limitations of
this theory is provided by Reed et al.(!). One of its
main assumptions is that the boundary layer can be
considered as locally-parallel, i.e. the mean flow vari-
ations in z and z, the coordinates in the plane of the
surface along which the boundary layer grows, are ne-
glected in the stability analysis. The influence of this
hypothesis has been studied for a number of years with
different methods(®>®), based mostly on the multiple-
scale approach. In most cases, though, the studies
were limited to the two-dimensional flat-plate flow for
which the non-parallel effects are indeed small.

The Parabolised Stability Equatioris (PSE) ap-
proach was developed more recently by Herbert and
Bertolotti(*) and the group of Dallmann at DLR-
Gottingen(®). Tt takes into account the dominant non-
parallel effects in the mean flow, as well as in the per-
turbed quantities and can easily be applied to more
ment with the experimental data than those obtained ~ complex flows, such as that about a swept wing, for
with the parallel formulation. In the case of the ON-  which the non-parallel effects are not known a pri-
ERA D wing, the improvement in accuracy obtained  ori. The numerical solution of the PSE is carried
by using the PSE approach instead of the parallel for-  within a space-marching procedure, with the parallel
mulation is much less significant. approximation and the first-order non-parallel correc-
tion solved simultaneously. This contrasts with the
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classical multiple-scale non-parallel approaches(2:3:6:7)
which result in a sequential resolution. of the problem.
After developing a three-dimensional, compress-

Y Aeronautical Chair Professor, ATAA Associate Fellow ible stability analyser based on the parallel theory(sig),

the research group of the J.-A. Bombardier Aeronau-
¥ tical Chair has recently developed a computer code

Copyright © 1998 by ICAS and AIAA. All rights reserved

21st ICAS Congress
13-18 September 1998
Meibourne, Australia




Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

based on this PSE approach, with the collaboration of
ONERA-CERT(%11)  This computer code was used
to study the importance of non-parallel effects on dif-
ferent wings. That study revealed that the inclusion of
the non-parallel effects in the stability analysis could
result in a shift of the dominant instability from a
streamwise to a crossflow one, accompanied by a de-
crease of the critical frequency. This behaviour was
linked to the presence of two maxima in the fluc-
tuation spectrum, a feature that has been observed
experimentally(?) but that the parallel stability equa-
tions seem to be unable to reproduce. A comparison
of experimental and non-parallel theoretical fluctua-
tion spectra(!®) was also conducted recently. It showed
that the non-uniqueness in the definition of the fluctu-
ation growth rate inherent to the PSE approach could
actually be exploited to better reproduce the experi-
mental data by considering the proper “physical quan-
tity” in this definition.

Following a description of the mathematical for-
mulation and its numerical implementation, this pa-
per will continue the previous investigation by detailed
comparisons of the experimental fluctuation spectra
obtained at ONERA by Arnal and Juillen®?) with
those calculated using both the parallel and the PSE
approaches. '

, 2 .Mathernatical Formulation

The description of the mathematical models will con-
centrate on the non-parallel Parabolised Stability Equa-
tions (PSE). The differences between this approach
and the classical parallel linear stability theory (Orr-
Sommerfeld theory) will be pointed out when appro-
priate.

2.1 Parabolised Stability Equations

In the present work, the linear PSE approach was
implemented for an incompressible flow over an infi-
nite swept wing (three-dimensional flow). A primitive-
variables formulation, as described by Casalis(!¥), was
used. Fig. 1shows the coordinate system considered in
the development of the PSE model: z and z are along
the wing surface, respectively in the chordwise and
spanwise directions, and y is normal to the surface.
The velocity components in the z,y and z directions
are U,V and W, respectively.

As in the classical Orr-Sommerfeld (OS) linear sta-
bility theory, the PSE approach to stability analysis
is based on the decomposition of flow variables (for
an incompressible flow, the velocity components u, v
and w and the pressure p) into a mean, steady part
and a quasi-sinusoidal perturbation. The main differ-
ence between the OS and PSE approaches is in the
form assumed for the mean flow and the perturba-
tions. Specifically, the flow decomposit;on in the PSE

Figure 1: Coordinate system

formulation is given by:
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Equation (1) shows that the z-derivatives of the
mean flow and its normal component, V, are no longer
assumed to be negligible. The amplitude functions are
now seen to depend on y and ¢ whereas they depend
only on y in the OS formulation, and the wavenum-
ber a, locally constant in the OS theory, also depends
on z. This z-dependence of the mean flow and am-
plitude functions is assumed to be much weaker than
their y-dependence, thus allowing some terms to be
dropped based on a scale analysis. These neglected
terms correspond essentially to the 2nd-order terms
of the multiple-scale approaches.

The system of equations for the linear PSE is ob-
tained from the full Navier-Stokes equations by sub-
stituting the above expressions, subtracting the mean
flow solution, neglecting derivatives of order 2 and
higher in = and, according to the linear stability anal-
ysis, eliminating terms that are quadratic in the per-
turbations. Neglecting the curvature terms related to
the curvilinear nature of the chosen (z,y,z) coordi-
nate system, a system of equations of the following
form is obtained: '

. 84q
(Los + Lnp)d + Nﬁ =0 (3)
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where Los, Lyvp and N are operators in y with co-
efficients that depend on z and y through the mean
flow profiles, and ¢ is the vector of unknown amplitude
functions, § = [&,9,®, p]”. Los is the same operator
that appears in the parallel formulation (Losg = 0),
while Lyp contains non-parallel terms linked to the
mean flow and the term da/dz.

It should be noted that, in order to effectively ob-
tain a parabolic system of equations with the primitive-
variables formulation, the term 95/0z has been ne-
glected in the z-momentum equation. Airiau(*®) has
verified numerically that this term is indeed negligible
(168/0=| < liaepl).

The boundary conditions that apply to this system
are the usual ones of adherence to the surface and
damping of the perturbations away from the surface:

w(z,0)=0 o(z,0)=0 w(z,0)=0
imé=0 limé=0 lmw=0 (4
Y —+ 00 y—00 y—oo
The spatial stability formulation is used (w real,
a and F complex). In the present PSE approach, on
an infinite swept wing, there is no amplification in the
z-direction (8; = 0,8 = ;) and the spanwise dimen-
sional wavenumber 3* is assumed to be constant.

2.2 Amplitudes

The solution of the parallel (OS) stability equations
yields a uniquely-defined spatial amplification rate,
0 =.—q;. In the PSE, as in other non-parallel stabil-
ity theories, it is possible to consider different “phys-
ical” amplitudes of the perturbation, based on vari-
ous “measurable” properties of the disturbance vector.
This feature is most useful when conducting compar-
isons with experimental results, as it allows to select
the amplitude that corresponds to the quantity that
Is actually measured. For instance, the following am-
plitudes would be used to compare with hot-wire, hot-
film and pressure-tap measurements, respectively:

Auy(2) = 12, Bly=yo
A(z) = 9’%@ B 5)
Ap(x) = {ﬁ(x)y)l?J:O

For transition prediction, on the other hand, the
amplitudes most commonly used are based on the
maximum values of the perturbation z and z veloc-
ity components and the integrated fluctuation energy:

@) = maxla(z, )|
do(z) = maxl(z,y) (6)

\/ /°° (1 + 5 + o) dy

3

/16(1:)

To each of these amplitudes corresponds a spatial growth
rate, given by
1 dA,

Om = —0; + :1: I (M)

as well as a wavenumber and wave orientation.

2.3 Transition Prediction

The €™ empirical method is used to relate the calcu-
lated growth rates to the location of transition. In the
classical parallel approach, different integration strate-
gies arise from the fact that, with the dimensional fre-
quency f fixed, there still remains the wavenumber §*
to be determined('®). With the PSE hypotheses, how-
ever, only the constant-3* method is appropriate:

molt, ) = max{ [Cont om0} @
The same definition for the n factor also applies to the

parallel theory, though it is then of course uniquely
defined, as the amplification rate.

2.4 Normalisation

In Eq. (1), the z-dependence of the perturbation is
split between the amplitude functions and the expo-
nential term containing a(z). To lift this ambiguity
and determine « uniquely, Herbert(*) proposed the use
of a normalisation relation, imposing the slow varia-
tion in x of the amplitude functions (3§/0z < iag).
The normalisation relation adopted consists in impos-
ing A.=cte., which results in the following:

[ on  _0% 0w
N = G + T + e ) dy =
() /0 (u6z+vax+w6:ﬁ> y=0(9)
where ¢ designates the complex conjugate of §.

3 Numerical Implementation

3.1 Discretisation

The z-derivatives in Eq. (3) are evaluated using first-
order upwind differencing:

k R .
- u (10)

Lj —Tj—1

9
Oz

J

where j and k are the grid indices in z and y, respec-
tively. With this discretisation, and the introduction
of the y-derivatives of & and % as new dependent vari-
ables, the system given by Eq. (3) is transformed into
the following first-order semi-discrete system:

k
= Mo + ME; (11)

¢
Oy

J
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in which
« on dwlt
= A:Aa «>Aa_7_ 12
and Mzk., contains terms related to gf;}-‘“l. Hirsch’s

fourth-order compact scheme(!?) is used to express the
y-derivatives. After rearrangement of the equations, a
block tridigonal system of equations is obtained:

NFGF+L 4 NEGE 4 NEGE-1 = pF (13)

which can be solved by a LU decomposition method.

3.2 Initial Conditions

The system of equations to be solved being parabolic
in &, initial values of « and § are required to start the
calculations. In our approach, these are provided by a
local parallel (OS) solution, thereby inducing a tran-
sient phase in the first few stations in z. In order to
minimise the influence of this phase, it is important
to initialise the calculations sufficiently but not too
far upstream of the (a priori unknown) non-parallel
neutral curve. The sensitivity of the PSE results to
the initial OS solution has been illustrated by Lan-
glois et al.(!9), It might be possible to overcome this
difficulty by using a non-parallel local solution, as pro-
posed by Masson et al.(")] to start the PSE.

3.3 Calculation Procedure

The parallel stability problem leads to a local eigen-
value problem, which can be solved by a number of nu-
merical techniques. The Parabolised Stability Equa-
tions, on the other hand, are more akin to the bound-
ary layer equations and must be solved using a space-
marching procedure in z. At each z-station, an iter-
ative procedure is used to solve Eq. (13) subject to
the normalisation (9). This is illustrated by the al-
gorithm presented in Fig. 2. An initial guess of «,
ag-l), is obtained either from the initial conditions (at
J = Jjo) or from the value of o at previous stations.
With ag.p ) fixed, the solution of Eq. (13) yields new

values of the amplitude functions, q"](p *U. The norm

1s then calculated and used to define a new estimate
of a:

Ne ,\(’p—l—l)
a§p+1) —a® _; @ )

- (14)
J | A§(§§p+l))

The procedure is repeated until convergence of aj,
which implies naturally N, = 0, and the calculations
then proceed to the next station in z.

4 Results

The influence of non-parallel effects on transition pre-
diction was illustrated in Ref. (11) by torrelating the

Initial Cond. |1 =

OSatj=j,-1 i
fp=1

o, Fixed g

PSE Sol. N

1" Estimate
i3

€S

A" < 7

no

iterative procedure oY = P Al

|

| Ny
P =ptlj
|| j =j+1 ll
space-marching procedure

Figure 2: PSE Algorithm
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Figure 3: ONERA D (60,-4) — External velocity dis-
tribution

n factors calculated using the OS and PSE approaches
with the location of transition measured by Arnal and
Juillen*?). This was done for two different infinite
swept wings, one with the ONERA D airfoil (sweep
angle of 60°, iricidence of -4°) and the other with the
AFVD 82 airfoil (sweep angle of 49°, incidence of -2°).
The distribution of the z-component of the external
velocity on these two wings is illustrated in Figs. 3
and 4. This indicates that streamwise instabilities will
be the most significant ones at low freestream veloci-
ties, but crossflow disturbances may come to dominate
at higher velocities.

The main conclusion of Ref. (11) was that non-
parallel effets are negligible on streamwise instabili-
ties, but can be quite significant on mixed stream-
wise/crossflow disturbances and indeed very strong
on purely crossflow ones. One very interesting ob-
servation that was made concerned the influence of
the non-parallel effects on the critical wave orienta-
tion and frequency. It was found that including the
non-parallel effects could result in the dominant in-
stability shifting from a streamwise to a crossflow one,
and produce a decrease of the critical frequency, which
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Figure 4: AFVD 82 (49,-2) — External velocity dis-
tribution

otherwise is not affected by the non-parallel effects.
This behaviour was linked to the presence of two max-
ima in the fluctuation spectrum, a feature observed
experimentally(!?), but not predicted by the parallel
stability equations.

In this section, we will compare our predictions
with hot-wire and hot-film measurements(*2). For the
PSE results, we will therefore use the amplitudes based
on the u- component of perturbation velocity at a fixed
position with respect to the wall and the shear stress
at the wall, denoted fiuy and A, respectively (see Sec-
tion 2.3). The energy amplitude, 4., will also be used
to illustrate the influence of the amplitude selection.
This possibility of selecting the amplitude does not
exist with the OS theory, which should give the PSE
an advantage when comparisons are made with exper-
imental results.

This comparison with experimental results will be
done in the form of fluctuation spectra at a fixed
position z,. The experimental spectra represent the
frequency distribution of the perturbation amplitude.
Numerically, the spectral distributions of amplitude
are obtained from the n factor as:

Am(f,xs.) =A nm(f,zs)

where subscript m indicates the various possible choices
for the PSE amplitude, as in Eq. (7). The unknown
initial amplitude Ap,, is determined by matching the
peaks in the numerical and experimental spectra at
the most downstream location. It is assumed that the
initial amplitude is the same for all frequencies.

We first present results for the AFVD 82 wing for
which hot-film measurements are available(!2). Non-
parallel results have already be presented in Ref. (13)
for three freestrean velocities, namely 28, 38, and 42.5
m/s. We now examine as well the parallel results for
the two extreme velocities. Figures 5 dnd 6 are com-

mo€

(15)

parisons between the experimental data and the pre-
dicted spectra at two locations on the wing for the case
of the lower freestream velocity. In this case, A,,, has
been determined by matching the numerical and ex-
perimental maxima at z,/c = 0.35, as shown on Fig. 6.
The predicted non-parallel spectra based on the shear
stress, APSE(f, z,), are in very good qualitative and
good quantitative agreements with the experimental
data over a wide range of frequencies. Departures be-
tween APSE(f z,) and the measured amplitude are
only noted at very low frequencies where the experi-
mental data are not expected to be reliable. The PSE
results are in better agreement with the experimental
data than the parallel ones, denoted by A9S(f, z,), in
terms of amplitude levels as well as peak frequency
and overall behaviour.

Figures 8-9 present similar comparisons for the
same wing operating at Q. = 42.5 m/s. A,,, has
been calculated at z;/c = 0.35. Behaviours simi-
lar to those of the lower freestream velocity case are
observed, confirming our findings. The PSE results
based on the energy amplitude are also shown on these
figures. It is interesting to note that the behaviour of
APSE(f z,) is very similar to that of A9S(f,z,), es-
pecially at the two upstream stations. This might be
related to the fact that the energy amplitude, result-
ing from an integration through the boundary layer
thickness, is less sensitive to local features of the flow,
as is the Orr-Sommerfeld approach.

Figures 10 to 13 show the parallel and non-parallel
results obtained on the ONERA D wing at Qo =
75 m/s, along with hot-wire measurements(12). The
trends observed on the AFVD 82 wing can also be seen
on the ONERA D wing. However, the improvement in
accuracy obtained by using the PSE approach instead
of the parallel formulation is much less significant in
this case.

5 Conclusion

The Parabolised Stability Equations (PSE) provide a
natural framework for the inclusion of non-parallel ef-
fects in stability analysis. This article described the
mathematical formulation of the PSE as well as their
numerical implementation. In the PSE approach, the
amplitude of a perturbation can be related to a “physi-
cally measurable” quantity, a possibility that does not
exist with the parallel stability theory. This feature
was demonstrated to be physically relevant, the nu-
merical spectra obtained with the PSE and an am-
plitude corresponding to the quantity experimentally
measured being in better agreement with the exper-
imental ones than those resulting from parallel (Orr-
Sommerfeld) calculations.
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Figure 5: AFVD 82 (49,-2) — Fluctuation spectrum,
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