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Abstract

This work demonstrates the efficiency of multigrid
convergence acceleration technique for an overset grid
method. The flow solver scheme is based on an explicit,
vertex-based, finite volume scheme with central differ-
ence type of spatial discretization. In contrast to multi-
grid for structured grids, the grid quality inevitably
degrades with the level of the coarse grids. The impor-
tance of robust coarse grid operators for multigrid algo-
rithms on unstructured grids is discussed. A new coarse
grid operator is proposed. The capabilities of the multi-
grid scheme are assessed by solving the flow equations
over configurations of varying geometrical complexity.
The convergence by multigrid alone is accelerated by an
order of magnitude in both 2D and 3D.

1 Introduction

Since explicit schemes only make use of local infor-
mation, a large number of iterations is required to trans-
mit information across the computational domain. This
becomes extensively CPU-demanding for large prob-
lems. The multigrid method is a powerful method of
accelerating the convergence to steady-state of a numer-
ical scheme. The usefulness of multigrid for hyperbolic
equations was first demonstrated by Ni and later by
Jameson‘?. Multigrid methods offer an alternative to
implicit methods in order to efficiently solve large prob-
lems, requiring low additional memory overhead.

The multigrid methods for unstructured grids imply
additional challenges. Coarser grids cannot be generated
in a simple way from a fine grid as is the case for struc-
tured grids. In the last decade two main approaches to
multigrid for unstructured grids have been explored,
overset meshes and control volume agglomeration.

The method of overset grids implies that coarse grids
are generated completely independent of the fine grid
and may not even contain any common points. This is
possible because the underlying theory of multigrid
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methods does not assume any relation between the vari-
ous grids, only that information can be transferred back
and forth between the grid levels. This technique was
first demonstrated by Lohner and Morgan(3) and later by
Mavriplis(4). The approach provides great flexibility in
determining the appearance of the various grid levels.

The main disadvantage of the method of overset grids
is that the coarse grid generation generally is non-auto-
matic. Techniques have been proposed to circumvent
this disadvantage. This usually involves the removal of
selected fine grid vertices and the triangulation of the
remaining grid points(s) ®_ Olliver-Gooch(” has pre-
sented an interesting approach for which the coarse tri-
angulation is derived incrementally from the fine
triangulation by removing vertices, guaranteeing a valid
triangulation at every step in the procedure. The possi-
bility to extend this technique to three dimensions is
however unclear.

The method of control volume agglomeration, intro-
duced by Lallemand et al (8), means that control vol-
umes are fused together to larger control volumes. For a
vertex-based scheme the control volumes are taken as
the cells defined by the dual mesh formed by drawing
the triangle median segments. The idea of the agglomer-
ation method is to agglomerate neighboring fine grid
control volumes, creating a smaller set of control vol-
umes. .

In this work we have adopted the mrethod of overset
grids to implement in the FFA flow solver FLUID for
unstructured grids(9) (10) This flow solver is applicable
to both 2D and 3D flow computations. The numerical
method is described in section 3.

2 Grid Generation

2.1 Grid generation
All grids are generated by TRITET'!, an in-house

- code for generation of unstructured 2D and 3D grids.

The code is based on the advancing front technique. The
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The code is based on the advancing front technique. The
ADT data tree structures{? is implemented in order to
reduce the computational time. The CPU time follows
the asymptotic Nlg(N) behavior of the ADT algorithm.

Input to the grid generation are a set of surface patches
and the background nodes. The background nodes are
automatically connected to a background grid by a
Delaunay algorithm.

Adaptive grids are generated by use of a gradient sen-
sor. Several key-variables can be monitored simulta-
neously. The sensor permits directionally stretched
grids. As key-variables all the normalized primitive vari-
ables are used. Thus, it should be possible to detect main
features in the flow. The adaptation can start from very
coarse initial grids.

2.2 Coarse grid construction

The generation of very coarse unstructured grids is diffi-
cult, especially in three dimensions. The preservation of
short characteristic edges in the geometry may result in
some cells of low quality, since the specified cell sizes
may be much larger than the length of these edges. The
coarse grids are generated by the same background grid
as the fine grid, but the specified cell sizes (transforma-
tion matrix) are multiplied by a scalar factor.

In order to achieve the best multigrid performance, the
coarsening ratio between subsequent grid levels should
be 1:4 in 2D and 1:8 in 3D. It is usually possible to gen-
erate four grid levels, even for complex configurations.
In cases we have been able to generate a fifth grid level,
it has not improved the multigrid efficiency.

3 Numerical Scheme

3.1 The Euler flow model

The Euler equations which govern inviscid compress-
ible 3D flow written in the integral form for a control
volume Q with the boundary 8Q read:

%J.Qc'}dV+§aQF(?])~d§ =0. 1)

Here § represents the conserved quantities: density,
the components of momentum, and total energy. F(3)
represents the inviscid flux density tensor, V the volume
and § the surface vector.

3.2 Spatial discretization

A vertex based scheme is chosen since it requires sub-
stantially less memory overhead than a cell centered
scheme. The control volume for a vertex consists of the
outer faces of all contiguous tetrahedra. This implies
that the control volumes will be overlapping. The

scheme is however conservative in the g quantities
since, for each contribution to the summation of convec-
tive fluxes for a vertex, a term with the same magnitude
but with opposite sign will appear in a similar summa-
tion for a neighbor vertex. The integral formulation of
the governing Equations (1) is applied to each control
volume

n;
%(v,.?;,-n Y F;-a3 =0, )
=1
where i is the node at the center of the control volume,
n; is the number of faces of the control volume, and
AS; is the surface vector for the face. The flow variables
inside the flux summation are the arithmetic means over
variables at the face vertices.
This discretization corresponds to a finite-volume for-
mulation using the trapezoidal rule of integration.

3.3 Dissipation

A proper form of numerical dissipation for a central
scheme on structured grids consists of a blend of second
and fourth differences according to Jameson et al. (13, A
similar construction can be made for unstructured grid
schemes. In this case the dissipative operator consists of
a blend of a harmonic and a biharmonic operator, see
Jameson and Mavriplis{!¥,

o O +1)
D(g) = 3, (€ (a5 =g + £ (Vg = Vig)—=—4(3)
=1

V2 represents the undivided Laplacian operator on a
unstructured grid. sg,f) is a pressure switch and eﬁ,f) isa
coefficient for the biharmonic operator, A is the spectral
radius and m; is the number of edges contiguous to the
node i. In contrast to structured grid schemes, the har-
monic and biharmonic operators are isotropic.

We define,

Y. (pe=p)

k=1

2 (pd + o

k=1

v, = e

“

where ? is an empirically determined coefficient.

The pressure switch sf,f) is taken as the maximum value

of v, at the two end vertices of the edge,
2
85,() = max(V, V) .. . 5)

In the vicinity of a shock wave the biharmonic opera-
tor tend to produce overshoots. It is therefore turned off
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by
D)y (6)

is a constant coefficient.

85,‘:) = max(0, K(

where k¥

Since, in Equation (3), both eﬁf) and sfz) is symmet-
ric with respect to i and k, also the dissipation operator
is conservative with respect to the conservative quanti-
ties q.

3.4 Boundary conditions

An impermeable wall boundary condition is applied at
solid walls and at the symmetry plane. The contributions
to the boundary integral in Equation (1) are zero except
the pressure terms in the momentum equations. This
boundary condition is only set through the fluxes, the so
called weak formulation. This means that the velocities
at the boundary are in general not tangential to the
boundary for a not yet converged solution.

For the alternative, the strong formulation, the normal
velocities are explicitly set to 0. It is however quite com-
plicated to implement the strong formulation for this
type of discretization since we know the surface normals
not at the vertices but at the mid points of the surface
elements. This implies that for each update of the
boundary conditions, a system of equations has be
-solved. This becomes quite expensive in 3D.

At inflow-outflow boundaries, characteristic boundary
conditions are applied, see Berglind(9). At a subsonic
outflow boundary it is possible to specify either the
ingoing characteristic, the pressure or the normal veloc-

ity.

4 Multigrid Algorithm
4.1- The FAS-scheme

The FAS-scheme is a generalization of the multigrid
correction scheme for linear operators to non-linear
operators(lg). The coarse grid equation can be written as

_ H -H_
Lyty = —1,r,—(-Lyly &) N

where L is the nonlinear operator, u is the solution and
r is the residual. The subscript h refers to the fine mesh-
and the subscript H refers to the coarse grid. 7 ,17 is the
restriction operator for the residual and 7 ,7 the restric-
tion operator for the solution.

The right hand side of this expression is called the
forcing function. Once the coarse grid equations have
been advanced in time, the fine grid variables are
updated as,

_new ~old h . _new H_old —old
i, =mn, +1gay -y, ) =18, +vy (8)

» where v is the coarse grid correction.

If the transferred residual in Equation (7) is O then the
coarse grid solution will equal the transferred solution.
According to Equation (8) this implies that no correc-
tions of the fine grid solution will be performed. Conse-
quently at steady state, the solution calculated by the
multigrid FAS-scheme will have the same accuracy as
the solution of the fine grid problem.

4.2 Intergrid transfer operators

The flow variables are interpolated using bilinear
interpolation, i.e. the flow variables in the coarse grid
vertex Cl are interpolated from the fine grid triangle F1-
F2-F3 enclosing the vertex, Figure 1. The corrections of
the prolongation are interpolated in the same way.

It is desirable that the transfer of residuals is conserva-
tive, i.e. the sum of residuals of the fine grid should
equal the sum of the transferred residuals to the coarse
grid. According to Mavriplis(4) this can be achieved by,
for each fine grid residual at a vertex FI in Figure 1, dis-
tribute the residual value to the three vertices of the
enclosing coarse grid triangle C1-C2-C3. By using the
same weights as given by the bilinear interpolation, the
restriction operator becomes the transpose of the prolon-
gation operator. Therefore, the same interpolation tables
are used for both the restriction and the prolongation
operator. Each coarse grid vertex FI receives residual
contributions from all fine grid points which lie in a
coarse grid triangle contiguous to P.

Fig. 1: lllustration of conservative residual restriction.

In order to locate a particular cell which encloses a

- particular node, one must search over the grid cells. A

search over the entire grid requires omN?) operations,
where N is the number of vertices of the grid. For large
grids it will require an extensive amount of CPU-time.
For this reason the ADT algorithm(lz), developed for
our grid generator, is applied to find the cell that
encloses a particular vertex.
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On strictly concave boundaries, the boundary vertices
will be exterior or coincide with vertices in the interpo-
lation grid. The vertex P in Figure 2 will not lie inside
any of the searched grid cells. Therefore the distances to
all boundary grid cells, at the same boundary in the
interpolating grid are computed. The boundary grid cell
closest to the vertex P is used in the interpolation.

"\

Fig. 2: Computation of the distance to a boundary grid
cell.

The interpolation tables are computed prior to the flow
computations. With the described method, the total time
requited for the computation of the interpolation coeffi-
‘cients constitutes a small fraction of the CPU-time
required for the flow computations.

4.3 Multigrid time stepping.

The time stepping scheme plays an important role in
the multigrid algorithm in damping high frequency error
modes. A five-stage hybrid time stepping scheme, is
used to drive the multigrid algorithm. The time stepping
scheme is given by,

i 0 At j~1
W(]) - W( )_ajﬁ(c(w(j ))—Dj—l) (9)

,where =1, 2,..., 5. C is the convective operator and D
is the dissipative operator updated according to,

Dy = D, = DW )

D, = Dy = D Py + (1-B)D, (10)

D, = ypw' )+ (1-y)D,

The dissipative operator D(w) is evaluated only at the
first, third and fifth stages of the scheme and is
employed to construct the D; operator, which is a linear
combination of present and previous evaluations of
D(w). The values of the coefficients are chosen accord-
ing to Jameson and Mavriplis(ls), B=0.56, y=0.44 and
o =1/4, 0p=1/6, 03=3/8, 04=1/2 and as=1/4.

i

The forcing function in Equation (7) can be written as,
P = R -R(w") (11

, where R’ is the transferred residual and w’ is the trans-
ferred solution. On the coarse grids the time stepping
proceeds as follows

OO

—ajAz(R(w‘f‘”)+P) X (12)

In the first stage the calculated residuals on the coarse
grid are cancelled by the second term in the forcing
function P leaving only the R’ term.

4.4 Coarse grid dissipation

For overset and agglomeration multigrid techniques it
is inevitable with a degradation of the grid quality for
coarser grid levels. In order to achieve a good multigrid
efficiency, stable coarse grid operators are required. A
way to ensure a more stable coarse grid operator is,
according to Venkatakrishnan and Mavripli523, to for-
mulate a first order Roe’s upwind solver on the coarser
grid levels. However, it was found that the Roe’s upwind
solver is considerably more expensive than the central
difference scheme.

An alternative is to formulate a first order central dif-
ference scheme as a coarse grid operator. If the bihar-
monic operator in (3) is omitted and the pressure switch
in front of the harmonic operator is replaced with a con-
stant £

- A+ 1))
D(a) = Y, Vg -0 (13)

k=1

, a new scheme that is formally first order accurate is
obtained. The constant £ is for the computations pre-
sented in this work set to 0.02. -

This coarse grid operator in Equation (13) is found to
significantly improve the robustness of the multigrid
scheme. In most cases it allowed an increase of the
CFL-value enabling speedups in CPU-time up to 50%.

In some cases we have also been using a lower CFL-
value on the coarser grid levels.

4.5 Smoothing of corrections
The robustness of an overall multigrid scheme can,

) according to Radespiel and Swanson U9 be improved

by smoothing the coarse grid corrections before they are
passed on to the finest grid. The smoothing reduces
high-frequency oscillations introduced by the linear
interpolation of the coarse grid corrections.

In an explicit scheme, solution updates are directly
proportional to the computed residuals. It therefore
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seems reasonable to use the procedure for residual
smoothing to smooth the corrections.
Implicit residual smoothing equation for unstructured
grids implies that we solve the smoothing equation,
3
(1+n)R;—e Y R, = R;, (14
k=1
where R is the initial residual and R is the smoothed
residual. The system of equations (14) is strongly diago-
nally dominant and can therefore be solved by Jacobi
iterations. For residual smoothing, two Jacobi iterations
is found to give sufficient accuracy.

The influence of number of iterations for smoothing of
the corrections on the convergence rate is depicted in
Figure 3. The AGARDOI test case for a NACA0012
profile is computed with a 4 level V-cycle for different
number of smoothing iterations. In Figure 3 it can be
seen that one smoothing iteration is sufficient to smooth
the high-frequency oscillations of the corrections. With-
out smoothing of the corrections this case did not con-
verge unless the CFL number is lowered.

The value of the coefficient € is in all computations
presented in this paper set to 0.2.

Cycles

0.0 3.0 G.IO.1 o

090

1 smoothing iteration

3

5

-3.5

7.0 J

Fig. 3: The influence of the number of smoothing itera-
tions for the corrections on the convergence rate.
The computations are performed for a 4-level V-
cycle for the AGARDO1 case for a NACA0012 air-
foil.

5 Test Cases

In the test examples presented here, a multigrid V-
cycle is applied. The number of pre- and post-smooth-
ings used on the various levels is shown in Table 1 .

The computational cost for the V-cycle is 2.20 work

i

units in 2D an 1.54 work units in 3D, where one work
unit is the computational work required for a single grid
computation on the finest grid level.

Level | Pre-smooth. Post-smooth.
2 2 1
3 3 1
4 4
Table 1: Pre- and post-smoothings for the 4-level V-
cycle.

In the convergence diagrams the L, norm of the den-
sity residual is plotted as a function of both the number
of multigrid cycles or work units.

Cycles

oo 1.5 3.0,

.0, 5003
0.0 ; ;10

Single Grid

............. V2cycle

--------- V3-cycle
~———— Vécycle

Work Units

0.0 1:5 3.‘0.10«21

0.0

Singte Grid

Fig. 4: Convergence rates for different number of grid
levels of the multigrid V-cycle for the NACA0012
airfoil. The convergence rates are plotted vérsus
a. the number of cycles and b. as work units.

5.1 Single element airfoil
Flow past a NACAQ012 airfoil at a free stream Mach
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number of 0.8 and an angle of attack of 1.25° which is
known as the AGARDOI case, is calculated. A sequence
of four grid levels around the NACAQ012-profile is
applied, see Figure 7. The finest grid contains 21224
vertices.

The Cp-distribution in Figure 8 is compared with a
solution on a structured grid obtained by the AGARD
working group 07 @9 The structured grid contained
23040 vertices, i.e. approximately the same number as
the unstructured grid. The agreement is good every-
where except in the vicinity of the shocks where the res-
olution is somewhat better for the unstructured grid
solution. The absence of oscillations in the vicinity of

10 4

Cycles

Single Grid

Work Units

-0

op 40 80

Single Grid

254}

s

Fig. 5: Convergence rates with and without multigrid for
computation of transonic flow over a transport
wing. The convergence rates are plotted versus
a. the number of cycles and b. the number of
work units. M=0.5, a=2.2°.

the shock and the sharpness of the shock demonstrates
the efficiency of the artificial dissipation operator in pro-
viding smooth solutions.

Multigrid convergence rates for the V-cycle with dif-
ferent number of grid levels are depicted in Figure 4.
Already two levels of multigrid speeds up the conver-
gence a factor 8 in iterations and a factor 3.7 in work
units. The speedup for four multigrid levels is 37 in
terms of iterations and 17 in terms of work units. In this
case convergence to machine accuracy is reached within
75 multigrid cycles.

5.2 A Transport Wing

The multigrid algorithm is also tested for flow around
a transport wing. A transonic case with the free stream
Mach number 0.8 and the angle of attack 2.2" is com-
puted. At these conditions the flow is transonic and a A-
shaped shock is formed over the wing. The grid con-
sisted of 483979 vertices. A sequence of four grid levels
is generated, Figure 9. The grid has been adapted to gra-
dients in the flow in three steps. The Mach-contours are
depicted in Figure 10. The multigrid convergence rate
for this case is depicted in Figure 5. The multigrid
speeds up the computation a factor 11.6 in terms of iter-
ations and a factor 7.5 in terms of work units.

5.3 Fighter configuration

A transonic flow case past the Swedish fighter air-
plane JAS 39 Gripen configuration is computed. The
grid consisted of 477 525 grid points and a sequence of
four grid levels is generated, Figure 11. The grid has
been adapted in three steps to gradients in the flow solu-
tion.

The free stream Mach number is 0.95 and the angle of
attack is 6.4". The specified inlet mass flux ratio at the
air intake Cp is 0.7. The flow at the air intake is sub-
sonic, which means that one characteristic variable
propagates into the computational domain, i. e. one
boundary condition should be applied. In this case it is
natural to specify the normal velocity since the average
normal velocity is known, see (@2 We assume that the
velocity profile is uniform.

Mach contours on the configuration surface are
depicted in Figure 12. The solution contains crisp
shocks on the canard, the delta wing and behind the can-

" opy. This demonstrates that the grid resolves relevant

flow features of the solution.
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Fig. 6: Convergence rates with and without multigrid for
computation of transonic flow over the JAS 39
Gripen configuration at M=0.95 and o. = 6.4°. The
convergence plofted versus a. the number of
cycles and b. the number of work units.

The multigrid speeds up the computation a factor 12.5
in terms of iterations and a factor 8 in terms of work
units, Figure 6.

6 Summary and Conclusions

This work demonstrates the efficiency of multigrid
convergence acceleration technique for an overset grid
method. The speedup in CPU-time due to multigrid

alone is more than an order of magnitude in 2D and
somewhat less than an order of magnitude in 3D. A new
alternative for a coarse grid operator, for which the dis-
sipation is modified such that a first order scheme is
applied on the coarser grid levels, is proposed. In most
cases it enables the use of higher CFL-numbers.
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Fig. 7: A sequence of grids employed to compute
transonic flow over a NACA0012 profile. The finest

grid contains 21224 grid points and the coarsening
ratio for the subsequent grids is approximately

1:4.

FFA unstructured grid

------------ AGARD structured grid

Fig. 8: Cp-distribution on the NACA0012 profile for
the AGARDO1 test case (M=0.80, a.=1.25°).
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Fig. 9: A sequence of grids employed to compute
flow over a transport wing. The finest grid contains
483979 vertices and the coarsening ratio be-
tween the subsequent grid levels is approxima-
tely 1:8.

Fig. 10: Mach-contours for computed flow over a
transport wing configuration at M=0.8 and o, = 2.2°.
AM = 0.05.
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Fig. 11: A sequence of grids employed to compute
transonic flow over the JAS 39 Gripen configura-
tion. The finest grid contains 477 525 vertices and -
coarsening factor between the subsequent grid
the levels is approximately 1:8.

Fig. 12: Cp-distribution for computed flow about the
JAS 39 Gripen configuration at M=0.95 and o. = 6.4°, o
ACp =0.05.
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