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Abstract

An implicit procedure for minimizing the error in-
troduced by approximate factorization is presented for
solving the unsteady Euler or Navier-Stokes equations.
Numerical viscosity is added directly to the flow equa-
tions by augmenting the natural viscosity, similar in
concept to.that of an eddy viscosity. This approach
preserves the frame independence of the of the gov-
erning equations even when solved in arbitrary curvi-
linear coordinate systems. Convergence rates of ap-
proximately 0.8 are achieved upon application for high
Reynold’s number supersonic flow past a blunt body.
Converged solutions, to at least engineering accuracy,
are obtained in about 100 time steps on adapted grids.

Introduction _
Implicit numerical methods for solving the equa-
tions of compressible viscous flow have been devel-

oped and used widely during the past quarter century. _

These methods first approximate the governing par-
tial differential flow equations with a matrix equation
and then replace, by approximate factorization, the
original matrix with a sequence of efficiently invert-
ible matrix factors. In addition, these methods often
add artificial dissipation to control numerical instabil-
ity. The difference between the original equations to
be solved and those actually solved numerically rep-
resents computation error. This error is introduced
through

1 discretization of derivatives by finite difference
quotients,

2 approximate factorization of the original matrix
equation, and '

3 the addition of artificial dissipation.

These methods typically operate at time steps far
smaller than are required by time accuracy considera-
tions and often require thousands of time steps for con-
vergence to even engineering accuracy. Errors intro-
duced by approximate factorization or decomposition
are principally responsible for slow convergence. Rel-
atively small time steps are required to contain these
errors introduced during the initial transients of the
flow and then many time steps must be taken to rid the
solution of the garbage introduced. This ‘causes slow

convergence. On the other hand, discretization error
and artificial dissipation are principally responsible for
degrading the accuracy of the numerical solution.

The strategy for obtaining fast and accurate solu-

tions to the equations governing compressible inviscid
or viscous flow is to first strip away, as much as pos-
sible, sources of numerical error and then reintroduce
only that which is necessary to control instability with-
out destroying the physics of the gov.eming equations.
The strategy is given as follows.

1 Discretize the derivatives by finite difference ap-
proximations of high order accuracy. — In the
calculations to be described, the invisid spacial
derivatives were approximated by third order ac-
curate upwind biased difference quotients in sub-
sonic flow regions and second order accuarate up-
wind spacial differences in regions of supersonic
flow. Central second order accurate approxima-
tions were used for the viscous terms.

2 Minimize the error of approximate factoriza-
tion. — The numerical procedure for minimiz-
ing approximate factorization error is described
by MacCormack!. It consists of two parts: an
approximate factorization, used earlier by Bar-
dina and Lombard?, with decomposition error
much smaller than that used in the Briley and
McDonald® or Beam and Warming* methods,
and an additional procedure to eliminate further
the approximate factorization error that is intro-

duced.
3 Add frame independent artificial viscous stress
and dissipation of minimal strength. — An ap-

proach to control numerical instability, similar
in concept to that of an eddy viscosity used to
include the effects of turbulent mixing in the
Reynolds Averaged Navier-Stokes equations, is
used to add numerical viscosity directly to the
flow equations by augmenting the natural vis-
cosity. The Navier-Stokes stress tensor is itself
frame independent and hence this approach pre-
serves frame independence, believed to be im-
portant for a physical balance of the governing
equations when solved numerically in arbitrary
curvilinear coordinate systems.
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The procedure is both fast and accurate because of And the solution change vectors AU, calculated ex-
the minimization of numerical error. This procedure plicitly, and 8U, calculated implicitly, are given by
has been applied to solve two difficult benchmark flow
problems. One presented as a challenge by Pulliam®
for Euler solvers and the other proposed by Blottner®
as a test for Navier-Stokes solvers.

Implicit Matrix Equations .
Consider the unsteady equations of compressible §Ui_yj

viscous flow in two dimensions represented in general
coordinates £ and 7 as follows.

U 9F 8G 6U; ;-1

.52_ + 6_5 + —a—n— =0 (1) [6U] = 66Ui’j and [AU] = AUi,j
i+l )

A finite difference/volume equation, written in delta
law form, approximating the above equation, is given .
by Eq. (2) below (2) Uit

D_ D_ i
{I+ At ( Y Aty + —A—nB ,J+1/2> } ‘SUi,fl
= —At (Fi+1/2,j - Fi_llz,j G?,j+1/2 - G?,j-—l/2> i

f
L
r
1

A€ + A
. B " Matrix M is of size [(n z n)z(n z n)] and vectors [ U]
where A and B are the matrix jacobians of the flux  and [AU] are of length (n = n) on an (n = n) mesh.

vectors F and G with respect to state vector U, re-
spectively, and the dots, - , appearing in the equation
indicate that the difference operators operate on all
factors to the right. Upon application of the difference
opetators an equation of thé following form is usually

The block element matrices A; j, Bij Cij, Dij, and
E; ; are defined below with o = 1.0.

.obtained. A= I 1ot At ( _in )

B j8URKL + A g6URFY + iU Y ) : Aa \TEHAG T

+ Dy 0UN, + Eg 6UTHL = AUP, o Ay (B'l, g =B 1/2)

where A;j, Bij, Cij, Dij and E;;j are block rnatnx B .= —f—a At
elements and M Ay T it @)

AUT. = = At - -

e n n n n ’ Ci’j - AyB+‘xj—1/2
_ At <Fi+1/2,j =l + Giir1/2 "Gi,j-uz) ) At
Ag An Dij = +a— Att+1/2] ~

Eq. (3) can also be expressed in full matrix form. = ! At in

_A+i—1 2,5
M. [5U] = [AU] Az~ Tint/2d

where M =

fzr z - -z - - - - 0T The bars appearing on the matrix elements indicate
z z z - - T - s that the Modified-Steger-Warming method is being
z o oo used to approximate these jacobian matrices using
arithmetically averaged data from both sides of the
flux surface. The Roe method, using geometrically
T averaged data, could be used as well. The sub-
- scripts appearing on the jacobian matrices, for exam-
L ple A-h 12,1 indicate the sign of the split matrix and
z - - z zr =z - . the flux surface location. For this example, the split ja-
cobian matrix contains only non-negative eigenvalues
e r - - z z =z and the flux surface lies midway between mesh points
L. - - - - - . .z « - z z] (#,7) and (i + 1,7).
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Modified-Steger-Warming Flux Splitting
The split fluxes can be written in terms of Uy and
Ug defined at, for example, coordinate surface &, /2-

LR

-1 i i+1 i+2
i-1/2

i+1/2 i+3/2

(?) The Steger-Warming split vector flux is

P = AuyUs+ AU,

(i) The Modified-Steger-Warming split vector flux is

(M-5-W)
Fs’+1/2-

(#47) The Roe split difference vector flux is

= A+i+1/2UL + A—H—l/ZUR

Fr + F 1
F(Roe) _ L+ IR Ay

i+1/2 = T 9 T 9

(Ur—Uyr)

The split jacobians are evaluated also using the
state vectors Uy and Ug. For the Modified-Steger-
Warming method
UL +Ur

2 .
Similarly, the Roe method uses a geometric averaging

of the values Ur and Ug to form fi,-.H /2- Three
appoximations for Ur, and Ug follow.
(1) First order upwind:
U = U
Ur = Uip
(2) Second order upwind:

Ur = %(3U.~ - Ui_1)

Aiy1y2 = A(Uit1/2), where Uipyyz =

1
Ur = 5(3Ui+1 - U£+2)
(3) Third order upwind biased:

1
Up = §(3Ui+1 + 6U; — U‘_l)

. :
Ur = §(3Ui +6Ui41 — Uiy2)

In the present computations, second order upwind ap-
proximation was used in supersonic regions, third or-
der upwind biased approximation was used in sub-
sonic regions and first order upwind approximation
was used, as will be described, just ahead of shock
waves. ' "

Approximate Factorization (AF)

The standard approach to solve Eq.(2) is approxi-
mate factorization, which when applied yields
D_- .. D_. .
{I + AtE—A ,'+1/2,J-} {I+ EBni,j+l/2} 6Ui’:;-1

= —AU;;

The matrix M is factored by
M~ M- M, (5)

These matrix factors are of form

M, =
[z zr - 7
r - z
z z z
D . A - B
z - =z z
z - =z
L -z z
and M, =
rr . ]
z z z - §
z z =z
B A, C
zx z z -
.z oz oz
L . r zl

Each factor represent a block tridiagonal matrix. Dur-
ing matrix inversion, each need to be of only dimension
(n z n) when solved line by line through each mesh di-
rection. The matrix elements B ;,C;;, D;; and E;;
are defined as before in Eq.(4) and

Afi,j=I+At (—" — A" )

Az +it1/2,5 —i-1/2,j
- At - ~
Apig=1+ Kg} (B:-i,j“/z _-Bgi,j—1/2)

Unfortunately, upon matrix multiplication of the
two factors in Eq.(5), none of the original matrix ele-
ments are returned exactly and some zero elements of
M become significantly nonzero. This factorization er-
ror reduces accuracy and slows algorithm convergence.

Modified Approximate Factorization (MAF)

The approximate factorization procedure can be
modified to significantly reduce the adverse effects of
decomposition error. The modified procedure has the
property of Stone’s Strongly Implicit Method (SIP)?
for matrix decomposition of returning exactly the orig-
inal nonzero elements of the matrix M upon factor
multiplication, although some originally zero elements
become nonzero. This modification was used by Bar-
dina and Lombard? in 1987, which they called their
Diagonally Dominant Alternating Direction Implicit
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(DDADI) procedure. The basic idea of the diago-
nally dominant procedure also appears much earlier
in the literature®®. It is apparently rediscovered ev-
ery decade or so and then, unfortunately, forgotten by
the computational community. When applied to the
matrix M

-1
M=~ M, [D]™* - M, (6)
with M. =
z . =z -
T z
z z - =z
D A E
z z z
zr -z
L T zJ
M;:
[z I 7
r z =z
X T b _
B A C
z T z
zr zz z
. z z

and diagonal matrix

.. D=
T . . . . . « 7]

L - . . . . . z_

The block matrix elements appearing above are again
defined by Eq.(4) with the exception that the param-
eter o has now been set to 2.

In three dimensions M can be decompositioned by

M~ M; - [D]'-M; - D] M

Although the original nonzero elements of matrix
M are returned exactly by the above MAF decompo-
sition procedure, other formerly zero elements are dis-
turbed and can contribute to both error and reduced
convergence speed. The following section describes an
iterative procedure for eliminating or further reducing
this remaining decomposition error.

Removal of Decomposition Error
Eq.(6) can be expanded as follows.

M=~M;-[D]" M, =M+P

The equation actually solved, instead of Eq.(3), is
M. [sU]+P - [6U] = [AU] (M)

The difference between Eq.(3) and Eq.(7) is the de-
composition error term P - [§U]. We now present an
iterative procedure for removing this decomposition
error.

The decomposition error term is fed back into the
matrix equation on the right hand side for self cancel-
lation. A k-step iterative modified approximate fac-
torization algorithm!, MAF(k), is defined as follows.

MAF(k) Algorithm
M. [EU(")] +P. [w(“)} =[AU]+P- [5u<k-1>]
[5U(°>] = 0]

where k=1,2,3,--.
MAF(1) is the same as Eq. (7) above. For this iterative
procedure to work, each MAF iteration must be nu-
merically stable and the sequence must converge. For
it to be efficient, the number of iterations must be kept
small, ideally at two. A stability analysis and exam-
ples showing sequence convergence have been given!.
The optimum value for the maximum number of k sub-
iterations per time step was shown to be two for flows
going to steady states.

Added Numerical Dissipation

It is possible to distinguish ertificial dissipation in-
troduced as additional terms to the difference equa-
tions from genuine dissipation introduced by choices
made, for example upwinding, in the discretization of
terms actually appearing in the original set of differ-
ential equations. The former can be considered to be
of a lower form in the sense that human intervention
adds it at will or can dial up its strength until sub-
jectively pleasing results are obtained: On the other
hand, dissipative first order accuarate upwind differ-
encing is often blended with higher order derivative
approximations, through the use of flux limiters, in re-
gions containing steep gradients, for example at shock
waves, to control numerical oscillation. Both forms,
artificial or genuine dissipation, can introduce serious
side effects adversely affecting the numerical solution.
It is introduced anisotropically, usually in the direc-
tion of strong gradients, and can destroy the physical
balance of the governing equations solved in general
curvilinear coordinate systems typically used for flows
about aerodynamically shaped bodies. However, nu-
merical dissipation is the fundamental requirement for
numerical stability and obtaining solutions. It has to
be present. This section presents a rational way to for-
mulate and implement it. We first observe the sensi-
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tive balance displayed by the Navier-Stokes stress ten-
sor by comparing its form in cartesian and cylidrical
coordinate systems.
The Viscous Stress Tensor

The Navier-Stokes momentum equations in three
dimensional cartesian coordinates are as follows.

dpu + Opu +p + Spuv + Opuw _ 0Ty  OTay 0Ty,
ot Oz Oy 0z =~ Or Ay 8z
6_pz+ dpvu  Bpv?+p + Opvw _  Oryr _ Omyy  Omys
ot Oz oy 0z oz Ay 8z
Gpw + dpwu  Gpwv + Spuw? +p _ _37” _ 072y _ o122
ot Oz dy Oz T fz Oy Oz
. Ju _ _ du v
Tep = —Adiv - §— 2#—6—1', Toy = Tyz = —} (a_y + 5;)
L v _ _ v dw
Tyy——/\dzv~q—2y%, Tyz = Tzy = —H (E'{" 6y>
— Jw _ _ dw Ou
Tez :—/\dw.q-2,u-—;-, Tz = Tz = —f4 (_2:-+ 6z)
.. _Ou  Ov Ow
and dw-q—-a—;+-5§+g

The Navier-Stokes momentum equations in cylin-
drical coordinates are as follows.

dpgr 4 d(pg-* + p)r + 3pqrgs + 0p4ra:  pes’
ot ror ro8 dz r
_ Ormy 01 OTr: [ p+Toe
T rér  ré8 Oz r
dpgs | Opgagrr | Opgs’® +p + 0pqeq: 4 Pt
ot ror rdf oz r
arfg,- 67’90 61—.9, Trd

rér  ré@ 0z r

0pq. ) 0pq.q-7 apqz q6 apq:2 +p
ot ror ro8 Oz
Ortyy OTi9 OTsy

T rr ~ rd0 ~ oz

Trr = —Adtv -d’—?paa?,

. - 6(18 qr
Tog = —Adiv - §— 2p 7‘6_9+—7'- ,
by = —Adiv - §— Qp%i;,

o Ogr O35 g
Tro = Tor =4 (r69+ o r

g 0
Tgz = Tz = — 4 ('_q£+ﬁ>

0z  rdf
_ _ Oq, | Ogr
Tzr—Trz——ﬂ<ar + 62)

. _Org 0Oy  Og;
and diw-T=m+ 56t 5

On comparing the two descriptions above we can
For exam-
ple, consider the two additional terms on the left hand
side of the momentum equations in cylindrical coor-
dinates, —pgy?/r and +pg,qs/r. The first is the cen-
trifugal force term always adding momentum in the
radial direction if the fluid has angular momentum.
The second represents the “ice skater” term where an-
gular momentum is increased if radial fluid motion is
toward the axis and reduced otherwise. The physics of
the flow requires these two terms to balance the system
and they naturally arise in transforming the cartesian
form of the momentum equations into the cylindrical
system. The viscous terms given on the right hand
side of the equations also show additional terms in the
cylindrical system and are required to balance the flow
physics. .

The equations of fluid dynamics are often solved
numerically in generalized coordinates, some not even
orthogonal, and care is taken to transform the carte-
sian equations, either directly or through finite vol-
ume formulations, into the computational coordinate
system so that the frame independent flow physics is
preserved. However, when it comes time to add dissi-
pation, either directly or through the choice of a lower
order accurate difference approximation, little thought
is given to the preservation of physical balance. The
desired effect of artificial viscosity is to damp numer-
ical oscillation, which often leads to instability. How-
ever, an unanticipated side effect is the destruction of
the physical balance of the overall system. It would
be similar to adding a significant new term to the
governing cylindrical equations that directly changes
radial momentum and causes an unwanted significant
“ice skater-like” reaction in angular momentum. It
is hopeless to add artificial viscosity in raultidimen-
sional curvilinear coordinate systems-and simultane-
ously preserve physical balance - with one exception.

The exception is to use the already frame indepen-
tent Navier-Stokes viscous stress tensor itself as a ve-
hicle to add numerical dissipation. Similar to the con-
cept of an eddy viscosity used to include the effects
of turbulent mixing in the Reynolds Averaged Navier-
Stokes equations, the addition of numerical viscosity
by augmenting the natural viscosity can be used in a
frame independent manner to control numerical insta-
bility. '

find similarities and explain differences.

B Bphysical + Pnumerical (8)

The Choice of Added Numerical Viscosity
Assuming the numerical procedure has been stripped

as bare as is reasonably possible of sources of numerical
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error and that the procedure requires added dissipa-
tion to control stability, we will illustrate the choice
of numerical viscosity for two flow situations, at shock
waves and subsonic convection. Numerical results will
be given for each case.

Numerical Viscosity at Shock Waves

Shock waves are probably the most prominent fea-
ture of compressible flow and they have received the
most attention in computational fluid dynamics. Yet,
they continue to be a major source of difficulty in mul-
tidimensional flow. Poor representations of them will
occur if they are strong, above a normal Mach number
of two, and are allowed to cut indiscriminantly across
a computational grid. Disturbing irregularities are of-
ten found near the axis of symmetry for blunt body
calculations!®. Mesh adaptation is not sufficent in it-
self to represent shock waves accurately. Numerical
dissipation is required. The following choice for added
numerical viscosity was used to obtain the results for
high Mach number flow past blunt bodies to be pre-
sented later.

First, the locations of all shock points in each
computational coordinate direction are found by de-
terming if the normal velocity component changes
from supersonic to subsonic flow across a computa-
tional coordinate surface with an accompanying in-
crease in pressure. Consider a £, n and ¢ computa-
tional coordinate system with points 1 and 2 adjacent
to each other in coordinate direction £ and £3 > £;. A
shock point is present if

qny > C1, dno < C2 and P2> D1

or

—qn; < C1, —Qng > C2 and

D> p2

where ¢, is the velocity normal to surface § =
constant, located midway between points &; and £,
¢ is the sound speed and p is the pressure.

If either of these conditions is met

Hnumerical; = 1/2 . Ahf,— *PiCi (9)

where Ah¢ represents the grid spacing distance in the
£ direction and p is the density. At both points ¢ =
1 and 2 the viscosity is augmented as shown above in
Eq.(8). Similarly, the other coordinate directions, 7
and ¢, are checked for the presense of shock points.
The above procedure augments the natural viscosity
along a narrow band, two points wide, aligned with the
shock wave. This in turn can influence the calculation
along a band four points wide. However, supersonic
points adjacent to points 1 or 2 shquld be shielded

from being affected by numerical viscosty. They don’t
need it and the upstream propagation of information
within a supersonic flow through numerical viscosity
is not physical. .

Further Comment on Shock Waves

An efficient algorithm is not enough, in general, to
insure rapid convergence to accurate numerical solu-
tions. The importance of the grid is fundamental and
has a strong influence on both convergence and accu-
racy. For the strong bow shock cases to be presented
herein mesh adaptation'® was used. A grid line of
the mesh was adjusted during the computation, into
alignment with the Mach one contour location within
the shock wave of the numerical solution. In addition,
mesh refinement near the shock Mach one location was
used for some cases. .

Also an attempt to preserve the integity of the
freestream just ahead of the shock wave was made by
modifying the flux approximation. This region, very
vulnerble to changes at the shock because of its rel-
atively low density, pressure and internal energy, was
shielded as follows. Again, consider a ¢, 5 and ¢ com-
putational coordinate system with points 1 and 2 ad-
Jacent to each other in, for example, the ¢ coordinate
direction. Assume that & and €, straddle the Mach
one contour location. Let &5 be an adjacent point lo-
cated upstream of the Mach one contour. Point &3 is
the nearest point to the shock wave surrounded com-
pletely by supersonic neighboring points. It should be
unaffected by the strong gradients at the shock. For
simplicity, assume points 1,2 and 3 correspond to mesh
points i+1, i and i-1. The flux leaving grid point &3
uses a simple first order upwind approximation,

Fi—1/2 =Fi

Using a higher order approximation requires extrap-
olation or interpolation of data from more than one
mesh point and can cause an unwanted disturbance to
the flow near shock waves. In addition, the supersonic
point located at the shock, &7, also requires adjust-
ment. The flux leaving it is a blended value of first
and second order upwind approximations, as follows.

Finajs = (1= B)« FL 5% + B« FEgree

where

1- Ml r
8= S P = R

As M;, the Mach number at point 1,-approaches one,
the flux at leaving point 2 becomes similar to that at
point 3 and as M, approaches one the flux becomes
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fully second order accurate. The blended flux repre-
sents a smooth transition from supersonic to subsonic
flow across the shock. All other mesh points away from
the shock are approximated to second order accuracy
in supersonc flow regions or to third order in subsonic
regions as given in an earlier section.

Numerical Viscosity for Subsonic Convection
Numerical instabilities often begin with oscillations

in the convection velocity within subsonic regions
where they can be reinforced through self stimulation.
The following choice for added numerical viscosity was
used to obtain the results for Mach 0.2 flow past an
ellipse presented in the next section.

Again, consider two points 1 and 2 adjacent to each
other and check for subsonic flow. If

and

lgnil < c1, lgnol < €2

then

Hnumericali =0.05 - min {Ahe, Ahy, Ah(}

- (p1lgn1l + p2lgn2l)
_ lang = 3(ga1 = Gnp) — dnal
‘qn3] + 3("1111‘ + l9n2|) + |Qn4| .+(€10

where points 3 and 4 are adjacent to 1 and 2 and are
ordered as €3 < §1 < €2 < §4 and € ~ 10~° is added
to prevent division by zero in motionless regions. The
quotient factor is bounded by one and is proportinal
to

1 3¢
— LA, n
5. % e
The above value of numerical viscosity is added, as in
Eq.(8), at points 1 and 2.

Computational Results
The method for solving the equations of compress-

ible viscous flow!, with added numerical viscosity as
just described, was applied to solve two benchmark
calculations with known numerical difficulties. The
first, inviscid Mach 0.2 flow past an ellipse with 6 to 1
axis ratio at 5 degrees angle of attack, was suggested
by Pulliam®, and the second, Mach 5 viscous lami-
nar flow past a sphere was suggested by Blottner®. In
addition, solutions for real gas equilibrium flow past a
sphere at Mach 18.5 and perfect gas flow past a sphere-
cone body at Mach 7.97 at 7 degrees angle of attack
are shown.
Mach 0.2 Inviscid Flow Past an Ellipse

In 1990 T.H. Pulliam® presented the outstanding
result that Euler flow codes were incapable of calcu-
lating low Mach number flow past ?he simple ellipse.

“The basic result obtained here is a lifting solution for
any combination of grid and/or angle of attack which
is nonsymmetric.” He then challenged the computa-
tional fluid dynamics community to “explain this un-
usual behavior” and he defined a benchmark flow prob-
lem, an ellipse with axis ratio 6:1 at 5 degrees angle of
attack in Mach 0.2 inviscid flow, which exhibited “dis-
turbing” results. The flow should produce zero lift and
drag but all known numerical Euler solutions written
in terms of varaibles p, u, v, and energy reproduced
neither. Pulliam’s results converged to a significant lift
coefficient of 1.545. This problem has since remained
the numerical equivalent to d’Alembert’s paradox.

Highly accurate solutions for this problem have
been obtained by Hafez and Brucker!! for the steady
incompressible and compressible form of the Euler
equations. Also, Winterstein and Hafez!? present ex-
cellent solutions for this problem with the Euler equa-
tions solved on triangular meshes. In the latter study,
they fixed the rear stagnation point by varying its
location until reaching the condition of zero lift. In
the present study, the unsteady Euler equations were
solved without any conditions on the location of the
stagnation points. There is much discussion concern-
ing multiple solutions for this inviscid flow problem,
which has no sharp trailing edge and no specification
of a Kutta condition. However, if the flow is initial-
ized with no vorticity, and none is generated during
the course of the calculation, the symmetric non-lifting
solution should occur.

0.150 N
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' \
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Figure 1. Mesh about an ellipse.

Fig. 1 shows a portion of a 130x66 point mesh for
this benchmark problem. The outer boundaries of the
stretched mesh were approximately 5000 major axis
radii away from the body. The natural viscosity was
set to zero and slip boundary conditions were imple-
mented at the body. The far field boundaries were
held to constant Mach 0.2 flow. The calculation was
started impulsively by suddenly placing the body in a

7
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uniform Mach 0.2 flow. The initial CFL number was
3.0x103, was increased to 2.5x10° after 80 steps and
thereafter was held fixed. The calculation was run to
2000 time steps to test convergence, but the solution
was fairly steady much earlier.

Figs. 2 and 3 show fairly symmetric patterns for
pressure contours and streamlines. If significant lift
were produced the rear stagnation point would be ex-
pected to move from the top of the trailing edge around
toward the lower surface, as shown by Pulliam®. Fig. 4
shows the coefficient of pressure along the surface of
the ellipse. Again, it appears fairly, though not per-
fectly, symmetric, as required for small lift and drag.
Fig. 5 shows lift and drag versus time step. The final
values are 4.00x10~3 and 1.66x10~3, respectively. The
lift fell to 7.40x10~2 after 100 time steps. The risidual
versus time step is shown in Fig. 6.

A reasonably accurate Euler solution has been ob-
tained for “Pulliam’s paradox” problem. This time
again, as with d’Alembert’s paradox, the answer ap-
pears to be viscosity, in this case too much or frame
dependent numerical viscosity, which can destroy the
sensitive physical balance of the Euler equations. '
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Figure 2. Pressure contours for subsonic flow about
an ellipse.
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Figure 6. Residual versus time step.

Mach 5 Viscous Flow Past a Sphere

The Mach 5 laminar flow past a sphere benchmark
problem was originally chosen by Blottner® in 1990 to
study numerical difficulties encountered near the in-
tersection of the axis of flow symmetry with the bow
shock wave. This region is very sensitive because of
the coordinate singularity caused as r — 0 in terms
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containing factors 1/r. See, for example, the Navier-
Stokes momentum equations given earlier in cylindri-
cal coordinates. Many papers have observed numerical
difficulties in this region. Blottner did an excellent job
of discussing the nature of this numerical problem and
presented excellent computational results using a thin
layer Navier-Stokes code. The bow shock wave was
used as an outer boundary of the flow. In the present
paper, a full Navier-Stokes calculation is presented and
the shock wave was captured as an internal feature of
the flow on a grid adapted to the bow shock wave, as
discussed earlier.

The flow was solved on three different grids, a course
mesh consisting of 22x26 points, a medium mesh of
42x50 points, and a fine mesh of 82x98 points, each
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Figure 7. Medium and coarse meshes about a sphere.

spanning the same flow volume. The computational
difficulty increases as points are placed closer to the
axis of symmetry. Fig. 7 shows the medium and coarse
meshes. An initial bow shock wave location was cho-
sen to be aligned with a grid line of the mesh. The
Rankine-Hugoniot shock-jump relations were used to
initialize the flow behind the shock wave with the
normal-to-the-body-surface velocity component reduc-
ing to zero as the body surface was approached. The
surface temperature was held at 98.89 degrees Kelvin.

- Sutherland’s formula was used to determine viscosity.
The Reynolds number, based on sphere diameter, was
1.89x108.

The calculation was started with a CFL number,
the ratio of the time step size actually used to the max-
imum allowed by an explicit method, of about 6x103
The CFL number was then increased to 2.5x107 dur-
ing the first 52 time steps and thereafter held fixed.
This medium mesh case was run for 256 time steps.
The mesh was also dynamically kept aligned with the
bow shock wave and refined in the neighborhood of
the shock. '
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flow past a sphere.

Pressure and Mach contours for the medium mesh
are shown in Fig. 8 and surface pressure, skin fric-
tion and heat transfer results for all three meshes are
shown in Fig. 9. Note that, as expected, skin fric-
tion increases linearly with distance from the axis of
symmetry, surface pressure and heat transfer have bell
shaped curves with their maxima at the axis, and that
the three solutions converge. The stagnation pressure
ratios, Pstag/Poo, On the three meshes, from coarse to
fine, are 32.5800, 32.6228 and 32.6667, which compare
well to the Richardson extrapolated value of 32.6558
given by Blottner®. The corresponding heat trans-
fer values, expressed in kW/m?, 103.920, 104.628 and
105.613 also compare favorably with the value 107.360
given by Blottner.
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_Figuré 9. Surface pressure, skin friction and heat

transfer for Mach 5 flow past a sphere (pressure is nor-
malized by the freestream pressure, skin friction was
devided by the dynamic freestream pressure and Q,
the heat transfer, is given in Watts/m?).

Fig. 10 shows the residual versus time step. During
the first 64 steps the mesh tracked the shock by relax-
ing the position of a chosen grid line toward the Mach

9
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1 contour!®. During this time the average residual re-
duction rate was approximately 0.86, a value larger
than the rate of 0.80! on a fixed grid for this same
problem. From step 64 to 96 the grid was refined in
the vicinity of the shock as well as tracked and there-
after the grid only tracked the shock. These results
were obtained on a 32 bit per word workstation and
residual reductions are limited to about five orders of
magnitude.
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Figure 10. Residual versus time step.

Mach 18 Real Gas Flow Past a Sphere

The approach discussed in the last section was ex-
tended to real gas equilibrium flow using the curve
fits of Tannehill and Mugge'3. The axisymmetric flow
for Mach 18.5 was solved on a mesh of 24x40 points,
which adapted without refinement to the bow shock
wave, and converged in approximately 100 time steps.
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Figure 11. Adapted mesh and pressure contours for
Mach 18 real gas flow.

The adapted mesh and pressure contours are shown
in Fig. 11. The bow shock, which at the axis of sym-
metry increased pressure by a factor of 461, is captured
cleanly because of the mesh adaptation and the numer-
ical viscosity introduced along the shock jump. The lo-
cal increase in numerical viscosity at the shock is used

the smooth the flow tangentially to the shock as well
as removing under and over shoots across the shock.
The former is important to preserve the freestream
direction of the flow approaching the shock. Small
deflections can cause significant errors in surface pres-
sure, skin friction and heat transfer distributions in
the vicinity of the stagnation point.

Three Dimensional Flow Past a Sphere-Cone Body

Mach 7.97 perfect gas flow about a sphere-cone
body was solved on a mesh of 24x20x20, which adapted
without refinement to the bow shock wave. The
Reynolds number based on the body nose diameter
was 70 million and the sphere-cone body, with cone
half angle 10.5 degrees, was placed at 7 degrees angle
of attack. The flow converged in approximately 200
steps. Fig. 12 shows a side view of the mesh and Mach
contours and Fig. 13 shows a cross sectional view of
the mesh and pressure contours along the cone section
of the body.
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Figure 12. Mach contours in side view.
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Figure 13. Mesh and pressure contours in cross sec-
tional view

Conclusion
A new procedure has been developed that is both
fast and accurate. It contains two approaches toward
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reducing computational error. First, factorization er-
ror is minimized by using a diagonally dominant ma-
trix decomposition and an iterative procedure to self
cancel remaining error. Second, numerical instability
is controlled using an approach similar in concept to
that of an eddy viscosity. Numerical viscosity is added
directly to the flow equations by augmenting the natu-
ral viscosity. This approach preserves frame indepen-
dence, believed to be important for a physical balance
of the governing equations when solved in arbitrary
curvilinear coordinate systems.

This procedure has been applied solve two difficult
benchmark flow problems. The computed results were
in good agreement with accepted computational and
theoretical results. The procedure has been extended
to real gas equilibrium flow and three dimensional flow.
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