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Abstract

A new time marching finite difference algorithm is for-
mulated for the solution of the Modified Transonic Small
Disturbance Equation. The algorithm determines the un-
steady reduced velocity potential and pressure coefficient
on the bounding surface of a wing. Unsteady transonic
flow calculations are presented for the flow over a large
aspect ratio rectangular wing of unit chord length and for
the flow over a swept and tapered wing.

Introduction -

A new'time marching finite difference algorithm is formu-
lated for the solution of the modified Transonic Small Dis-
turbance (TSD) equation.(8) The approximate factoriza-
tion technique was first developed for the Full-Potential
Equation and was shown to be very robust for either
steady or oscillatory transonic flow calculations.(19) The
TSD equation was first solved using the approximate fac-
torization method by Batina.(2 3)

Initially a time accurate finite difference discretiza-
tion is constructed. The reduced potential is determined
via aNewton linearization of the finite difference scheme.
In the iterative technique the coefficient matrix acting on
the unknown potential difference is approximately fac-
tored and the potential determined via the solution of
three block diagonal linear systems. Two of which are
block tridagonal. Each linear system can be solved by
the LU factorization method. Due to the block struc-
ture of the linear systems the solution procedure is easily
vectorized.

The finite difference scheme includes second or-
der type-dependent differencing(3' 47 for all streamwise
derivatives. As the flow changes from subsonic to super-

sonic the type-dependent difference operators smoothly -

change from central difference approximations to back-
ward difference approximations. This ensures a smooth
transition from subsonic to supersonic flow. Hence en-
tropy violating(4) decompression shock discontinuities
will not develop. As the flow changes from supersonic to
subsonic the type-dependent operator changes to an ap-
propriate shock point operator.(g) Thus ensuring a sharp
shock profile. Note that the type-dependent differencing

operators have been modified to produce sharper shock ~

profiles with little overshoot (after the shock).
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Nonreflective boundary conditions(®) are used at
the far field boundaries and a shearing transformation(5: 8)
is employed so that any given wing can be mapped into
a rectangular region.

The modified TSD equatien for the reduced

potential,(z) may be written as
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Here x,y and z represents a nondimensional rectangular
Cartesian coordinate system, t is the time variable, v is
the ratio of specific heats, M is the freestream Mach
number and in nondimensional terms the fluid velocity
is given by v = V(z + ¢). Equation (1) is locally of
hyperbolic type representing supersonic flow for ¢, > @
and of elliptic type representing subsotic flow for ¢, < .

The boundary conditions imposed upon the flow
field are

¢, + —Al—qﬁt =0 down/upstream boundary, (2)

1+ M
M
¢, —EQS: =0 above/below boundary, 3)
M ) .
by + Fqﬁt = right spanwise boundary, (4)
¢y =0 symmetry plane, (5)
(¢2) = wake, (6)
(6 + ) =0 wake, (7)

where (o) indicates the jump in the indicated quantity
across the wake. If the upper/lower surface of the wing
is defined as z = h*(z, y, 1), then the wing flow tangency
boundary condition is

¢F = hE + ke, (8)
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which is imposed at the mean plane of the wing. The
plus and minus superscript indicate the upper and lower
wing surfaces, respectively.

The dependence of the solution on the wing mesh
spacing poses a problem when applied to swept and ta-
pered wings. Due to the large number of points re-
quired, it is impractical to maintain a sufficiently fine
mesh spacing along the leading edge of a swept wing in a
Cartesian coordinate system. To rectify this problem we
map the wing into a rectangular region using a shearing
transformation. (1 8)

- In the shearing transformation the far-field bound-
aries are kept independent of the wing planform and
aligned with respect to the freestream direction, hence
both the physical and computational domains are con-
tained within rectangular regions. Smooth first and sec-
ond derivatives occur for values of the metric quantities,
particularly near boundaries and grid lines are clustered
near the leading and trailing edges of the wing. In gen-
eral terms the transformation is given by

£ =¢&(x,y), n=y,

where £, 7 and ( are the nondimensional computational
coordinates in the z, y and z directions, respectively.

After applying the shearing transformation, Equa-
tion (1) can be written as

MZ%¢y + 2M w, + 'B—2£ ‘a“'wz
2a " O€
5} g

_ - %éfl = ¢ 6—C<z¢<

s, g .,
%fy(?& +5y&(@n + &y ) (10)

+ Gaz%(cs,, + &yde)?
+ H( +5y af)(fﬂf’é &n + Eyde))

where w = ;¢ — 4. Note that w is positive/negative
when the flow is locally supersonic/subsonic.

Finite Difference Discretization and Solution Procedure

In the finite difference discretization of Equation (10) the
time derivative terms ¢;; and w; are approximated by
second-order accurate backward finite difference formulas
about the time level t = (n+1)At, where At is the time

increment. That is
M2(2¢n+1 . 5¢n T 4¢n-—1 _ @rn-‘l)
+ MQAt(3w"'"1 — 4w 4w
ﬂz(At) n+1
+ e St 06
(At)zCz a (C:dc)*tt ~
= R(¢™F, 67,0771, ¢" 7).

e (W) = (A (11)

(At)2P(p"*)

Here ¢™*! represents the unknown potential at time level
(n + 1)At. Our aim is to find ¢"*! at all points, given
¢, "~ !, etc. Equation (11) is nonlinear so the solution
is found by a Newton linearization procedure about ¢*,
where ¢* is the current best estimate of ¢”+!, We sub-
stitute "+ = ¢* + Ao into the left hand side of Equa-
tion {11), linearize about A¢ and approximately factor
the resulting expression,

-1 * n g n—1 n—2
WR(¢’¢’¢ N
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3At ﬁ2(At)
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L,=1-— 2M2% (14)
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In Equation (12) higher order terms in A¢ have
been ignored. Equation (12) forms a linear system which
can be solved for A¢ at each point in the computa-
tional domain. During the convergence of the iteration
procedure A¢ — 0 and the solution will be given by
"t = ¢*. The factored scheme can be implemented as

L5A¢H — 2}42 (¢ ¢n in—1 P 2)’ (16)
L,Ag = Ag", (17)
LcAg = Ag. (18)

A new approximation to ¢" 1 is found by systematically
solving the system of Equations (16) for A¢”, Equa-
tions (17) for A¢’ and Equations (18) for A¢. The fac-
torization is constructed so that the coefficient matrix in
the system of Equations (16) contains the terms due the
dominant &-derivatives and consequently forms a block
diagonal linear system. Similarly the coefficient matrix in
the system of Equations (17) and (18) contain the terms
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due the dominant n— and {— derivatives. Consequently
the systems (17) and (18) can be reordered to produce
block tridiagonal systems.

Central difference formulae are employed for all the
n— and (— derivatives. The £— derivative terms must
be approximated using type-dependent mixed difference
operators. The type-dependent differencing allows for a
smooth transition from subsonic to supersonic flow.

The far-field boundaries are aligned with respect
to the freestream and are midway between adjacent grid
points. For the far-field boundary conditions, Equa-
tions (2) to (4), the time derivatives are approximated
by second-order accurate backward finite difference for-
mulas and central difference formulas are employed for all
the spatial derivatives.

The symmetry condition, Equation (5), is imposed
by requiring that ¢, = ¢, + €y de¢ = 0. Since £ is odd
with respect to the spanwise coordinate &,(0) = 0 and
hence at the root chord the imposed symmetry condition
is ¢, = 0.

The boundary conditions on the wing and the wake
are imposed within the differencing of the (, (¢ 0¢)¢ term,
see Equation (10). The finite difference grid is con-
structed using a block structure with one block for the
flow above the plane of the wing and the other for the
flow below. In each block the wing lies mid-way between
adjacent grid planes, with one plane of grid points rep-
resenting an artificial level inside the wing. After each
sweep through Equations (16) to (18) information is ex-
changed between the blocks and the wing plane boundary
conditions are satisfied.

Initially a steady-state solution is calculated(®: )
and the steady reduced potential is used as an initial start-
ing state for the unsteady calculation. At each new time
level {t = (n+1)At) an estimate of the reduced potential
is required to start the iteration procedure. This estimate
is provided by performing a time linearization about level
t = nAt. That is, initially ¢"+ = ¢™ + Ad.

Type-Dependent Differencing

Type-Dependent differencing is used in transonic flow
computation to reflect the change in nature of the equa-
tion between regions of subsonic and supersonic flow.
That is, differenct finite difference formulae are used in
different flow regions. In the supersonic region we would
expect to be using backward, or so called upwind differ-
encing, and in the subsonic region central differencing.

The reduced potential, ¢(&, 7, (), is defined at the
grid points (&;,7m;,Ck), and w = £z ¢¢ — @ is found using
central differences about half grid points in space. That
is

Wig1/2 = (Ex)i+1/2¢i;1Agﬁ - U

In the differencing of terms like 8(w?)/9¢ the w values

are deemed either to be supersonic or subsonic and are
accordingly used for either central or backward differenc-
ing. Variables @ and 1w are defined so that @ is defined
as w in the subsonic region and zero in the supersonic
region, and b is defined as w in the supersonic region
and zero in the subsonic region. That is

(1 = €i41/2) Wit1/2,
€ip1/2Wit1/2,

Wit1/2 =
Wig1/2 =

(19)

where

1 f i—1/2 > 0
€i-1/2 = { o Wim1yz = (20)

0 for wi_1/2<0 '

The differencing for the (w?)¢ term uses the W variable
for central differencing and the w variable for backward
differencing. A second-order type-dependent differencing
scheme for (w?)¢ is given by(2. 3.4.5.6)

0

- ~ Ly
ggw‘zl. ~ Aw?—l/2+ Awf_l/z
I3

o~ T
+ AEA(ei-1/2 Aw?—uz)’ (21)

where Z)/(K is the forward/backward difference opera-
tor. For example

Wigif2 — Wi-1/2

_)
Awi—l/z = AE

Notice that in the subsonic/supersonic region a cen-
tral/backward difference approximation is used.

As the flow changes from subsonic to supersonic
the differencing changes from central to upwind differ-
encing, in a smooth way, without differencing across the
sonic line. This ensures that expansion shocks will not
develop.(‘") As the flow changes from supersonic to sub-
sonic then the differencing changes-to an appropriate
shock point operator.(g) For example if €;41/2 = 0 and
€i_1/2 = €i_3/2 = €i_5/2 = 1 then

=~ (vt -0)

7

+ (2“’?—1/2 - 3“’1‘2—3/2 + wiz—s/z) , (22)

both a central and an upwind difference. Note here that 0

. is the sonic reference value for w. f ¢;11/0 = €172 = 0

and €;_372 = €i_5/2 = 1, essentially a subsonic point,
then

Ag (w2)§ 1 = (w?-;-l/z - wiz—1/2)_
1
+ (0 - 2wz?—3/2 + w?—S/z) . (23)
Unfortunately the combination of Equations (22) and

(23) tends to spread the shock discontinuity over several
grid spaces.
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A new type-dependent differencing method is pro-
posed that should produce a sharper shock profile and still
eliminate expansion shocks. In the neighborhood of the
sonic line the new scheme is equivalent to Equation (21).
Hence expansion shocks are eliminated. The modified
type dependent differencing is,

- < .
—wl;i & Dw;_yyy+ 61'_1/2[Aw?—1/2
. o .
+A§A(ei_1/2Aw,'2_1/2)]a (24)

where @ and 1 are defined by Equation (19) and ¢ by
Equation (20). Notice now that if €it1/2 = €12 =0
and €i-3/2 = €i_5/2 =1 then

9

Ag (w2)€ li ~ wig+1/2 ~ Wiy

a central difference approximation. The reader should
compare this with Equation (23).
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FIGURE 1: Comparison between the type-dependent dif-
ferencing scheme, Equation (21) (thin line), modified
scheme, Equation (24) (thick line) and experimental data
(*) for two-dimensional flow over a NACA64A006 airfoil.

Figure 1 shows a comparison of experimentally
. measured{1)) and numerical estimates of the steady pres-
sure coefficient on the surface of a NACA64A006 airfoil
at 0° angle of attack, and M = 0.875. Numerical re-
sults were obtained using the type-dependent differencing
scheme, Equation (21) and the modified scheme, Equa-
tion (24). Notice that the modified scheme produces a
sharper shock profile, there is an absence of overshoot
after the shock and the shock position is much more ac-
curately determined.
In the differencing of g—g(fzwg—gAtﬁ”) which ap-
pears on the left hand side of Equation (16), the following
first-order mixed difference operator is used,

#

9 - o
= Aficija+ €12 A fioq)o,

7|, (25)

where

A4
=62

o¢
.fi+1/2 = €ip1/72fivi/0,

fiyip = (1 - €i+1/2)fiv1/2-

In using the first-order mixed difference operator Equa-
tion (25) we decrease the bandwidth of the coefficient
matrix in the system of Equations (16) from three to
two, and hence speed up the solution procedure. Note
that the scheme is still second-order as the corresponding
terms in the residual R (see Equations (11) and (16)) are
evaluated using the second-order mixed difference opera-
tor, Equation (24).
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* FIGURE 2: Scaled pressure coefficient (Cp/Cy) on the

upper surface of the rectangular wing at the root section,
with an oscillating quarter-chord flap. M = 0.875, re-
duced frequency k = 0.235 and At = 0.01337. The flap
oscillates through one complete cycle.

In the evaluation of the residual R (see Equa-
tion (11)) if the terms w?*!, w? and wP~! are eval-
vated like w; = (wit1/2 + wi_1/2)/2 (a central av-
erage), then the resulting numerical scheme is unsta-

ble. Note previously(z' 3.6) the terms w?"'l, wl, w;-“_l
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and 0(A¢)/0¢ were approximated using first-order up-
wind differences. In this new scheme the terms w; and
9(A¢)/0¢ (see Equations (11) and (16)) are evaluated
using a mixed difference operator that uses an upwind
approximation in supersonic regions and a central ap-
proximation in subsonic regions. As the flow changes
from subsonic to supersonic the mixed difference opera-
tor must change smoothly from the central approxima-
tion to the upwind approximation. Appropriate first and
second-order mixed difference operators are respectively,

9i = (Gi-172 + Gig1/2)/2 + Gi-1/2, (26)
9i = (Gi-172+ Gig172)/2 + Giz1/2
+ €i1/2(Gic1/2 — §iz3/2)/2, (27)
where Git1/2 = €ip1/agizi/2. and Gipin = (1 —

€i41/2)9i+1/2. In the approximation of w;, ¢ = w and
the second-order approximation (Equation (27)) is used.
In the evaluation of 3(Ag¢")/8€|;, (see Equations (16)
and (13)), g = 9(A@)/8¢, and the first-order approxi-
mation (Equation (26)) is used.

Results

Calculations were performed for the flow over a large
aspect ratio, rectangular wing of unit chord length and
semi-span length 3. The airfoil cross section is a sym-
metric NACA64A006 section with a flap over the final
25% of the chord. The flap is allowed to oscillate with
a maximum amplitude of 1°. Figures 2 and 3 show the
scaled pressure coefficient (C, /Cy) versus chord on the
upper side of the wing at the root chord, at even time
intervals over a complete cycle. The pressure coefficient,
Cp = ~2(¢s + ¢:), has been scaled with the critical pres-
sure coefficient; C; = —24. Values of Cp/C; greater
than one indicate locally supersonic flow. The reduced
frequency, k, is a nondimensional frequency. In Figures 2
and 3 the position of the flap hinge can clearly be seen as
a slight peak in the pressure profile. In Figure 2 the shock
discontinuity is seen to oscillate between about z = 0.58
and z = 0.65 as the flap oscillates through a complete
cycle. In Figure 3, initially when the flap is at (° angle of
attack (graph 1), there is no supersonic region. As the
flap angle increases a supersonic region and a shock de-
velop. As the flap angle returns to zero the shock begins
to move forward: As the shock moves forward it loses
strength and eventually moves off the wing.

Calculations were also performed for the flow over
a swept and tapered wing at a freestream Mach number
0.9. The semispan length is 1 and the chord length is 1
(root chord) and tapers down to 0.2875 at the wing tip.
The leading edge is given by z = 0.625y and the trailing
edge by £ = 1 — 0.0875y. The airfoil cross section is a
symmetric NACA65A004.8 section. The wing oscillates
about = 0.5 with an amplitude of 1° and a reduced
frequency £ = 0.2. Figure 4 shows the scaled pressure
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FIGURE 3: Scaled pressure coefficient (Cp/Cy) on the
upper surface of the rectangular wing at the root section,
with an oscillating quarter-chord flap, M = 0.835, re-
duced frequency k = 0.248 and At = 0.01267. The flap
oscillates through one complete cycle.

coefficient (C,/C;) on the upper surface when the wing
is at 0° and 1° angle of attack. A clearly defined three-
dimensional shock structure can be seen. Notice that the
strength of the shock increases as the angle of attack
increases. Figure 5 shows the scaled pressure coefficient.
at the wing root and tip sections when the wing is at 0°
and 1° angle of attack. At 0° angle of attack there is
no supersonic region at the wing root section, but as the
angle of attack increases a supersonic region and shock

_ develop. At the wing tip, as the angle of attack increases, )

the shock increases in strength and moves aft from about

z=10.78 to 0.83.
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FIGURE 4: Scaled pressure coefficient (Cp/Cy) on the
upper surface of the pitching tapered wing, when the wing
is at 0° (top) and 1° (bottom) angle of attack.
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