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Abstract

A numerical method is presented to predict unsteady
loads for aeroelastic calculations. It is well known
that the time-accurate solutions of the unsteady Eu-
ler equations are a reasonable but expensive and time
consuming approach, especially for transonic flows.
An alternative approach are the small disturbance
Euler equations (SDEE) applied to harmonic motion
providing the following advantages:

e The unsteady problem is formally reduced to a
steady one for the perturbation.

?

¢ The first harmonics of unsteady loads are evalu-
ated directly by that supporting the use of well
proven modal methods in aeroelastic analysis.

e Substantial reduce of computational time

For an optimal evaluation of the airfoil boundary con-
ditions a harmonically deforming grid is used. Re-
sults will be presented for several airfoils and wings in
pitching motion at subsonic, transonic and supersonic
Mach numbers. It is shown that for the most critical
region, namely the transonic region SDEE provides
an excellent and relatively quick mean for the pre-
diction of unsteady forces. The only remarkable dif-
ferences between the exact Euler solution and SDEE
solution may be observed at the pressure distribution
in the vicinity of the shock, which is of negligible in-
fluence for the coefficients.

Nomenclature

Symbols _

A ~ Jacobian matrix (¢-direction)

c speed of sound (,/xZ)

¢ chord length

Cr root chord length

ct tip chord length

Cp pressure coefficient

Cr, lift coeflicient

Cm moment coefficient ( about z,, )
thickness

e total energy per unit volume
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Superscript

L
R

Subscript
k,l,m

0

1

flux in &-, 7- and (-direction
Jacobian of coordinate transfor-
mation

frequency

reduced freqqency (7@%&—;)
matrix of the left eigenvectors
freestream mach number

pressure
conservative solution vector
conservative solution vector
times J

matrix of the right eigenvectors
right hand side

half span

source term

velocity in z, y and z-direction
contravariant velocities
contravariant velocities times J
Volume

pitching axis

axis of reference

angle of attack

ratio of specific heats

small value '

taper ratio

aspect ratio

diagonal matrix of eigenvalues
curvilinear coordinates

density

time

VEMag T

sweep angle

entropy correction parameter
limiter function

mean value
perturbation value
left value

right value

grid index system
mean value
amplitude
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Introduction

The ability to predict unsteady loads for aeroelastic
calculations in an accurate and economic way is gen-
erally a big demand of A/C industry, especially with
respect to the development of future ultra high ca-
pacity aircrafts. Due to the reduced stiffness of the
structure aeroelastic issues play an important role al-
ready in the early design phase. Modern CFD-codes
based on the solution of the time-accurate solutions of
the unsteady Euler- or Navier-Stokes-Equations are
successfully applied in the process of aircraft devel-
opment to investigate the complex aerodynamics, in
particular in the transonic region. With respect to
aeroelastic applications, where a big number of pa-
rameters like different natural modes, angles of at-
tack, Mach numbers, frequencies, etc., must be inves-
tigated, such an approach is expensive. In particular
simulations at lower frequencies are time consuming,
because the periodic state is reached only after a num-
ber of cycles nearly independent of frequency.

An alternative approach are the small disturbance
Euler equations (SDEE}, applied to harmonic motion
yielding to a set of linear variable coeflicient equa-
tions for the complex amplitude of the field quantities.
Within this approach first a steady state of reference
is calculated with means of the nonlinear Euler equa-
tions. Secondly the SDEE describing the unsteady
perturbation of the flow are solved. They are based
here on an explicit harmonic perturbation but any
other time law can be looked at, too. By that the so-
lution of an unsteady problem is formally reduced to a
steady one for the perturbation. This leads to an effi-
cient calculation for different frequencies and natural
modes based on one steady solution. It is emphasized
that the nonlinear flow physics are correctly modelled
within the SDEE, because linearization is introduced
with respect to time and the only assumption is that
the perturbation is small.

Investigations by now on that basis have been done
in the field of turbomachinery. Flutter and forced re-
sponse in twodimensional cascade flows were stud-
ied by Hall [3], Hall and Crawley [7], Hall and
Clark [4, 5, 14] and Holmes und Chuang [10]. Quasi-
threedimensional calculations have been performed
by Zirkelbach [21}, Kahl and Klose [13], furtheron
threedimensional calculations by Hall und Lorence [8]
and Hall, Clark und Lorence [6]. The methods pro-
posed exhibit two major differences:

¢ Modelling of the shock with Shock Fitting or
Shock Capturing.

e Evaluation of the airfoil béundary condition
based on a deforming grid or a fixed grid.

k ra‘ncﬂh'«,\ PR

For the first time Lindquist [18], as well as Lindquist
and Giles [17, 19] clarified the crucial question, to
what extent the linearized Euler equations can be ap-
plied to flows with shocks. Furtheron their investiga-
tions of onedimensional nozzle flows proved the suc-
cessfull application of Shock Capturing. This formed
the basis for the calculation of threedimensional flows.
The correct modelling of the shock impulse with re-
spect to position and strength is evident due to the
fact that the impact on unsteady loads is of the same
order than the unsteady pressure distribution in the
mainly linear region of the flow field around the airfoil
or wing. It was shown that by use of Shock Captur-
ing the shock impulse is smeared out and that the
width and the height of the impulse depends on the
amount of dissipation of the numerical scheme. But
nervertheless its contribution to the unsteady loads
does not depend on this effect [6, 18].

The evaluation of the airfoil boundary condition
seemed to be a crucial issue for the quality of the
results. Under the assumption that an airfoil deforms
with small amplitudes it was reasonable to model the
moving airfoll with a modified boundary condition
and a fixed grid. This boundary condition needs the
evaluation of the gradient of the mean flow veloc-
ity, which is difficult to compute accurately and leads
to significant errors. Hence, this evaluation was dis-
carded by some authors, though it is of great influence
at the leading and trailing edge [3, 7, 13, 21]. This de-
ficiency leads to the concept of deforming grids and
as consequence to a more complicated formulation of
the linearized Euler equations.

The need for an improved method for aeroelastic cal-
culations with consideration of nonlinear effects in the
transonic region suggests itself to use the linearized
Euler equations in the field of aeredynamics of air-
crafts. Therefore at the Lehrstuhl fir Fluidmechanik
at the Technische Universitat Minchen (FLM-TUM)
the development of a CFD-code based on the lin-
earized Euler equations was started. Shock Captur-
ing is used due to its inherent simplicty for the non-
linear as well as for the linearized Euler equations.
This is accomplished with flux difference splitting af-
ter Roe and a modified MUSCL-extrapolation® re-
taining the TVD-property**. The concept of deform-
ing grids serves for an optimal evaluation of the airfoil
boundary condition.

Firstly, investigations for several airfoils (NACA0012,
NACA64A010, 3% Parabolic) in pitching motion at
subsonic, transonic and supersonic Mach numbers
are undertaken. Results will be compared with those
gained by a nonlinear Euler method [16] and in the
subsonic case additionally with those of an unsteady

*Monotonic Upstream Scheme for Conservation Laws
**Total Variation Diminishing
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panel method [11]. Secondly, the application of the
method to threedimensional flows is shown, even cop-
ing with complicated shock structures. This is done
for the well known test case AGARD CT5 LANN-
wing in pitching motion, which has been used for
validition purposes in the framework of the FEuro-
pean Computational Aerodynamics Research Project

(ECARP) [2].
Theory

Euler Equations

In the present analysis, the unsteady, compressible
flow around airfoils and wings is modelled as threedi-
mensional, inviscid and adiabatic. Then the governing
equations are the threedimensional Euler equations
and may be expressed in strong conservation form
and curvilinear coordinates for moving grids as

0Q OF  0G 0H _
E_F%—’_EJJFW_O (1)

in which Q is the vector of conserved variables times
J and F, G and H are the convective fluxes with
respect to the &-, - and (-direction. They are given
by

p pU
pu pul + &p
Q=Jqgq=J {pv F=J| poU +&p
) pw pwU +&:p
e (Ue+p)—&p
oV I oW
puV +ngp puW + (op
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with U, V, W as the contravariant velocities calculated

from

U zfxu+fyv+€zw+€t
V=neut+ngv+nwt+n (2)
W=Cu+ G+ Gw+

Assuming a perfect gas the necessary closing condi-
tion is given by the equation of state

p=(k—1) e—-%p(uz—}—pz—i—wz)

. c
withk = 2
Cy
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The contravariant metrics are defined by

ng:ynzc_zny( ) JnxzzfyC_yfz(
JEy = zqz¢ — Tnzg , Jny = 2ezg — zex
JE = Tpyc — ypc , IN: = TeYe — Yoxe (4)

gt = _m‘rgx - y‘rfy - Zréz
M= —Tsle — YrNy — 2772
= —Z(p — ery - erz

J( = Yezny — 2¢Yy
JCy = 2nze — 2z,

J(, = TelYn — YeZy

J=zeJ6e +ye JEy + 2 JE
= ze(ypze — 2pYc) (5)
— Ye(Tnze — zpx¢) + zg(Tnye — YnT¢)

This forms the basis for a consistent derivation of
the linearized Euler equations, being very close to
the basic formulation (1). It should be noted that in
the framework of a Finite-Volume scheme on struc-
tured grids, J denotes the volume of a hexaeder cell,
whereas J¢;, J€ and J&, are the components of the
normal cellface vector with respect to the £ direction
and J&; is the change of the volume due to the move-
ment of the cell face.

For many aeroelastic calculations the degree of un-
steadiness of the flow is small compared to the mean
flow. Therefore the flow can be thought of being
composed of a steady mean flow and an unsteady
small perturbation flow. Furtheron the source of un-
steadines is assumed to be harmonic leading to the
following formulation for the deforming grid:

z(€,1,¢,7) = 2(&,7,¢) + #(€, 0, ()™

y(&n. ¢, 1) =& n, Q) + §(€,n, Qe (6)

2(€,1,¢,7) = 2(£,1,0) + (&, m, e
z,y, 7 denote the amplitude of grid motion about the
steady reference position Z, ¢, 7 and k is the frequency
parameter with respect to the dimensionless time 7.
Under these assumptions the metrics of steady state

and the metrics of the perturbation, undergoing har-
monic variations as well, can be deduced.

J&x — J_f:c'*‘ j&;eikT
J&, = TEy + JE,*7

JE = JE& + JE T (7
JE = T& + JEe™
J=J+ Jeb -
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In a similar way the unsteady field quantities are de-
fined by superposition of a steady and a perturbation
state:

a6, n,¢)=al&,n O +aEn Q¢ (9)

Now the perturbation expressions of the grid, the
metrics and the field quantities are substituted into
the Euler equations in strong conservation form and
curvilinear coordinates (1). Collecting the terms of
zeroth order leads to the nonlinear steady state Euler
equations, equivalent to the steady version of equa-
tion (1) and every quantity signed by a~. Collect-
ing the terms of first order results after some ma-
nipulation in the Small Disturbance Euler Equations
(SDEE):

510 (SO} CO N TeIEO N, & (6
or T e tTen T ac

(10)
RO Te IO N : ()
5% T Tan T

_(Qm%+Qm%+

Kreiselwaatey

U =J&u+ JEv + JE 0+ J& (11)
The first term of equation (10) is due to the fact that
the perturbation amplitude q is assumed to be for-
mally time dependent. Hence one obtains a time de-
pendent numerical scheme that is characterized by
pseudo time marching. Homogenous terms in q are
marked with (1) inhomogenous terms with (2. It is
obvious from the above equations, that an unsteady
solution can only be initiated by the unsteady met-
rics in the inhomogenous terms by causing an inter-
action of the real and imaginary part of the SDEE.
This interaction is removed in the quasisteady case,
i.e. £ = 0. Finally the linearized equation of state is
given by

_ I
p=(k—-1) e—E(QTLpu—ﬂ?‘f)

+20pu — 52 + 20pu — w2p)] (12)
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Numerical procedure

Firstly a grid for the mean flow is generated by means
of elliptic grid generation as well as a grid that rep-
resents the perturbation due to a given deformation
of the surface. Secondly the mean flow is computed
using a finite volume approach relying on Roe’s flux
difference splitting. Second order accuracy is achieved
by MUSCL exptrapolation, also ensuring the TVD
property. With respect to linearization the conser-
vative variables are choosen for extrapolation. Time
integration is based on the method of lines allowing
the application of different explicit and implicit meth-
ods. Especially for threedimensional calculations the
LU-SSOR. T scheme, for the first time introduced by
Jameson and Turkel [12], is used.

The SDEE (10) are with the exception of a source
term formally equivalent to the original Euler equa-
tions (1), resulting in a similar derivation of the dis-
cretized equations. Therefore the SDEE are replaced
by the following semi-discretized equation,

. .
-3—7' = —gim
f{k,hm = f‘§c1421/2,1,m - f"g—uz,z,m
+ égcl,l)+1/2,m - ég,z)-l/z,m (13)
+ ﬂgcl,l),mﬂ/z - ﬁg,l),m—lﬂ
-850 -8

- o
- Q. = Vetmieiom

where §{3)_is the homogenous and §{%) _ is the in-
Eim g klm
homogenous part of the source term

), = ~ Qi

50), = — (@it
+ f‘gl/z,z,m - ﬁgcz-)uz,z,m (14)
-+ égcz,l)ﬂ/z,m - égcz,l)—l/Z,m
+I:I§cz,1),m+1/2 - ﬁgcz,z),m-—l/z)

The main focus is in the consistent deduction of a lin-
earized Roe flux difference splitting, that is obtained
within two steps. The numerical flux nggl /2 tis given

¥

tLower-Upper-Symmetric-Successive-Overrelaxation
{For the sake of clarity threefold indexing is omitted

Keeise lon ciny

by

= (1
Fi-ﬁuz = (15)

1 n -~
2 [(Agclwzll;il +R§cl-21/2 |Ak+1/2| Lgﬁl/z) q£+1/2
+ (Ag*zl?? ”RECQI/Z M’“"“l/zl Lgcl'zl/z) ElkR+1/2]

where A&ZI%R are the Jacobian matrices evaluated

with the steady state field quantities of the left/right
side of the cell interface, however the matrices of the
left and right eigenveftors Lgcl_gl 2 Rgcl-le /2> 88 well as
the diagonal matrix A;1/9, containing the eigenval-
ues of the Jacobi matrix A, are evaluated with the
Roe averages. To maintain consistency to the basic
nonlinear Euler solver the eigenvalues are corrected
corresponding to Harten [9] and Yee [20] with a con-
tinously differentiable approximation of the absolute
value function

|| |z] > 6
V(z)=1 | (16)
248 1< 6

where ¢ is a parameter which is obtained by scaling
the largest eigenvalue

6=é- (U1+c[7) (17)
Furtheron MUSCL-extrapolation is used to calculate

the left and right steady state conservative field quan-
tities.

_ _ 1- _
Qf+% =qr + -2-‘I!f+% (@ — qr—-1)

R l-r (18)
Teyr = Qo1+ §‘I’k+% (Gr+2 — Qr+1)

sl _ o=l o oL _ Qe41 — Gk

‘I[k+% = \Il(rk_‘_%) with Tesy = A

BR | — WA ) with 7R, , = 1 =9k (19
‘pk-i—%_- —\Il(rk-i-%) with T'k+% = q_k+2_q_k+1 ( )

For all calculations the Van Albada limiter is used.
r2 +r

Linearizing MUSCL extrapolation up to first order
leads to

. .1 L
Qf+% = gk + §‘I’£+% (G — gr—1)
L T
+ E\I’i.;_% (Qk - Qk—l)
. . 1 . .
Gy = dee1 + 5‘1’?4_% (dr+2—dp41)  (21)
1

+ §‘i’f+% (Tr+2 — Te41)
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including a perturbation of the limiter. To maintain
simplicity and to allow the application of not con-
tinously differentiable limiters, the perturbation of
the limiter ¥£/R is omitted. Nevertheless a drawback
in accuracy is supposed to appear only in regions of
strong nonlinearity.

The source term gfl)m is computed once at the be-
ginning from the known steady state solution and the
perturbation metrics of the prescribed grid motion.
The numerical flux F®) is

ﬁgl/z = (22)
% {1‘;(2) <(_1£+1/2> +F® <Q§+1/2)

2 -R -
LE:«BI/‘Z (qk+1/2 - q£+1/2)]

(2) X
_Rk+1/2 lAk+1/2

Its important to emphasize that the entropy correc-
tion has to be linearized to apply it to the linearized
eigenvalues in diagonal matrix 1~\k+1 /2|
] SEPS
U (z,2) =< (23)
52 |Z|<é

Tl

Disregarding this linearization has a strong impact on
the quality of the results.

Results

The results are compared with the corresponding
nonlinear Euler method and if possible with an un-
steady panel method. The different methods are
marked with abbreviations throughout all figures.
FLMLIN corresponds to the SDEE, FLMEUL to the
nonlinear Euler method and POTENTIAL to the
above mentioned panel method.

NACA0Q012 airfoil in pitching motion

The SDEE are first tested for a flow that is governed
by linear flow physics. The motion of the airfoil is
given by

a(Ts) = g+ o3 Sin(kred . Ts) (24)

and the simulation parameters are Mao, = 0.5,
krea =0.0,...,4.0,2,/c = 0.5,z /c = 0.5, ag = 0.0°
and a7 = 1.0° The Euler calculations were carried
out on a fairly coarse C-type grid with 180 cells in
the wraparound, 30 cells in the normal direction di-
rection and a farfield distance of 20 chord length.
Figure 1 shows the 1. harmonic of the unsteady lift
and moment coeflicient and figure 2 the correspond-
ing 1. harmonic of the unsteady pressure distribution
at two distinct reduced frequencies k,.q = 0.5,2.5.

The agreement between the SDEE and the nonlin-
ear Euler method is excellent for the considered fre-
quency range. A significant difference with increased
frequency is observed between the Euler methods and
the potential method. This is caused by the different
numerical approach which becomes obvious especially
at the trailing edge. Euler methods exhibit a certain
amount of numerical viscosity leading to an inher-
ent formulation of the Kutta condition and a smooth
pressure distribution. In a potential method this has
to be done explicitly, leading to a strong recovery of
pressure at the trailing edge. Therefore changes are
of strong impact on the whole pressure distribution.

NACA64A010 airfoil in pitching motion

To test the capabilities of the present method the
well known transonic test case NACAG64{A010 air-
foil in pitching motion [1] for which the simulation
parameters are given by Mas = 0.796, kreg =
0.05,...,0.606, z,/c = 0.25, zm/c = 0.25, ag = 0.0°
and a; = 1.0° is considered. Again a C-type grid with
the same parameters as above is used. To adapt the
grid to the expected flow it is refined in the region
of the shock movement. Figure 4 depicts the 0. and
1. harmonic of the pressure distribution. It is noted
that C% of the SDEE and experiment are steady state
values. With the exception of the shock region the
prerequisites of linearization are excellent. The agree-
ment with experimental results is extremely good in
the shock region and downstream. Differences for C%
are observed upstream of the shock due to wind tun-
nel wall effects [15]. The numerical evaluated lift and
moment coefficients in figure 3 agree very well. This
is amazing because shock movement covers a region
of about 20% of the chord length_depending on the
frequency. This emphasizes the fact that the 1. har-
monic of pressure distribution is different in the shock
region for SDEE and nonlinear Euler, however the
load contribution of the shock impulses are equal.
This verifies the equivalent impact of shock impulses,
originally introduced by Lindquist and Giles [17, 19].
Therefore shock-capturing is an appropriate approach
even for linearized Euler equations by that opening
the way for transonic, threedimensional applications
where shock-fitting is too complex. Significant differ- -
ences in the coefficients can be seen with respect to
the experiment that are caused by unsteady shock
movement.

3% Parabolic airfoil in pitching motion

In this section SDEE is tested for a supersonic case.

- The existence of sharp leading and trailing edges im-

plies the use of an H-type grid. Its composed of two
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blocks with 120 x 30 cells each and with 60 cells on ev-
ery side of the airfoil. The simulation parameters are
given by Mae = 1.4, kyeq =0.0,...,2.0, zp,/c = 0.5,
Zmfe = 0.5, ap = 0.0° and a; = 1.0°. In this case
the shocks are fixed to the leading and trailing edges
ensuring an excellent agreement not only for the co-
efficients (Fig. 5), but also for the unsteady pressure
distribution (Fig. 6).

LANN wing in pitching motion

For threedimensional calculations the LANN wing
in transonic flow is selected. Within the Furo-
pean Computational Aerodynamics Research Project
(ECARP) [2] the AGARD CT5 test case is sub-
ject to extensive investigations with different CFD
codes. Geometric parameters are given by table 1
and the simulation parameters are Ma,, = 0.82,
kreg = 0.0,...,1.0, z,/c, = 0.621, zpm/c = 0.25,
ag = 0.6° and a; = 0.25°.

| LANN-wing |
s 277 | ¢, 1.0
A=cifer 041 A 7.92
£0.25 25¢ d/c 12%

Table 1: Geometric parameters

The simulation is done on a CH-type grid with
160 x 32 x 40 cells that is suggested by ECARP. Lower
and upper surface exhibit 60 x 28 cells. The upper
side of the wing shows the A-shocksystem (Fig. 8).
Figure 7 depicts the unsteady lift and moment co-
efficient for the considered range of frequency. The
agreement of SDEE and nonlinear Euler is excellent
even for a complicated shock structure. This is con-
firmed by a closer look at the unsteady pressure dis-
tribution at two different spanwise sections (Figs. 8,
9, 10). The 0. harmonic of pressure exhibits an excel-
lent agreement at the section y/s = 32.5% even in the
shock region, because recompression is done within
two shocks whose strength is weaker and more smooth
compared to the single shock at section y/s = 65.0%.
At this section a significant difference is only seen at
the shock. This states that with the exception of the
shock .region the flow physics are linear. Also shown
are computational results from two ECARP partners:

o DLR 1 Institute of Aeroelasticity (DLR AE)

o DLR Institute of Design Aerodynamics
(DLR EA)

A shock displacement of about 2% due to different
amounts of numerical viscosity is observed at the first

ttDeutsches Zentrum fiir Luft- und Raumfahrt
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shock of the inner section, but overall agreement with
these results is very good. The 1. harmonics of pres-
sure distribution of SDEE and nonlinear Euler agree
very well. As in the twodimensional case the shock
impulse exhibts some difference, but contribution to
the unsteady load is equal. With respect to the results
of DLR EA and DLR AE differences occur not only
at the shocks. The displacement of the first shock
impulse at section y/s = 32.5% corresponds to the
displacement of the shock. Figure 10 shows clearly
that the differences in the computational results due
to numerical modelling are more significant than the
differences obtained with the linearized or nonlinear
Euler method. It is emphasized that in the present
study the SDEE use one tenth the time of the corre-
sponding nonlinear Euler solver. -

Conclusions

A new consistent linearization of the unsteady, three-
dimensional nonlinear Euler equations is presented.
This leads to a set of linear variable coefficient equa-
tion called SDEE (Small Disturbance Euler Equa-
tions). The validity of the approach was shown for
several airfoils and wings in pitching motion at sub-
sonic, transonic and supersonic Mach numbers. For
a NACAO0012 airfoil in pitching motion at Ma = 0.5
it is shown that the agreement between SDEE and
nonlinear Euler is excellent. The most critical case
is the transonic flow. This case has been studied
for a NACA64A010 airfoil and the LANN-wing in
pitching motion. It confirms the equivalent impact
of shock impulses, originally introduced by Lindquist
and Giles [17, 19]. It has been proven that SDEE is
an excellent approach for unsteady transonic flows
even in the case of complex shock strutures. The ap-
plication of SDEE is less critical for supersonic flows
around airfoils with sharp leading and trailing edges
due to the fixed shocks. Furthermore it reduces com-
putational time by a factor of ten.

Work is underway to determine the limits of the
SDEE with respect to amplitudes of motion, shock
movement and strength. The present approach will
be used in the framework of aeroelastic calculations
of threedimensional configurations.
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