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Abstract

A study of adaptive mesh refinement and of high reso-
lution fluz-vector splitting schemes on the solution of 2-
D aerospace problems is described. The emphasis of the
work is in developing the capability of accurately simulat-
ing realistic viscous flows of aerospace interest. The gov-
erning equations are discretized in a cell centered, finite
volume procedure for unstructured triangular grids. Spa-
tial discretization considers three different schemes, in-
cluding a centered and two upwind schemes. Time march
uses,an explicit, 2nd-order accurate, 5-stage Runge-Kutta
time stepping scheme. Results are presented for adap-
tive inviscid simulations of the flow in a hypersonic inlet
configuration. Viscous simulations have considered airfoil
flows, transonic convergeni-divergent nozzle cases and the
hypersonic inlet configuration. For all cases considered,
the results have shown good qualitative agreement with the
expected flow features.

Introduction

The recent progress in Computational Fluid Dynamics
(CFD) has made these techniques attractive tools for real
life problems in aeronautical and aerospace applications.
However, several of these applications require the use of
efficient and robust algorithms as well as efficient proce-
dures to obtain adequate meshes. On the other hand,
these accurate solutions usually involve sufficiently re-
fined meshes and, despite the mesh refinement, the com-
putational cost must be maintained within acceptable lev-
els. The use of unstructured mesh techniques try to ac-
complish this goal by providing an environment suitable
for automatic grid refinement procedures. Adaptive re-
finement adds computational points only where they are
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necessary and, therefore, obtain the lowest cost solution
for a given required accuracy level.

The present work is concerned with the implementa-
tion and validation of unstructured grid, mesh refinement
techniques for two-dimensional inviscid and viscous flow
problems of aerospace interest. The present development
should be seen as an evolutionary step towards the desired
three-dimensional capability. The goal was to develop all
the criteria necessary to construct adaptive meshes suit-
able to the desired applications in the 2-D case, for com-
putational cost reasons. Moreover, there was also inter-
est in obtaining spatial discretization schemes which were
sufficiently robust in order to treat flows from the tran-
sonic regime up to hypersonic speeds. In this context, the
capability here implemented was tested on standard two-
dimensional cases of interest, including transonic nozzles,
airfoils and a hypersonic inlet configuration.

The present approach discretized the Navier-Stokes
equations in conservative form in a cell centered, finite
volume context considering an unstructured grid made
up of triangles. The spatial discretization of the in-
viscid terms was implemented using both a centered
schemell: 2 and, also, a few upwind schemes based on
the flux-vector splitting concept. For the flux-vector split-
ting cases, both a van Leer3: 4 and a Liou®® 6 formula-
tion have been tested. Results with the first-order and
the second-order implementations have been obtained.
The second-order flux-vector splitting schemes have used
a MUSCL-type extrapolation[7’ 8] in order to determine
left and right states at the interfaces. Several limiters
have also been tested in connection with the second-order

.upwind schemes, including the minmod, superbee, van -

Leer and van Albada limiters®. The discretization of the
viscous terms was always equivalent to a central difference
scheme. Time integration used an explicit, second-order
accurate, hybrid method which evolved from the consider-
ation of Runge-Kutta time stepping schemest9. Spatially
variable time stepping and implicit residual smoothing
procedures!?) were implemented to accelerate convergence
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to steady state solutions.

Adaptive mesh refinement, based on a sensor of flow
property gradients, was performed to obtain a better res-
olution of strong discontinuities. The automated adaptive
environment consisted of a mesh enrichment procedure
that divides each identified triangle which needs refine-
ment into four new triangles by adding a new point on
each face. In order to avoid hanging nodes, the triangles
that had only one face marked should be divided by halv-
ing. The properties of each new triangle were set equal to
those of the original one in order to restart the time iter-
ation process. A density gradient-based sensor has been
used in this work. The forthcoming sections will briefly
describe the theoretical formulation and numerical im-
plementation details. Several case studies are discussed
in an attempt to illustrate the capability implemented.
Finally, a critical discussion of the present status of the
work 1s presented together with a perspective for future
developments.

Theoretical Formulation

The 2-D time-dependent, compressible Navier-Stokes
equations can be written in conservation-law form as

oQ + o(E.—E,) 0(F.—F,)
at Oz Ay -

0. (1)
Here, @) is the vector of conserveci variables, defined as

Q=1[p pu pv e]", 2

where p is the fluid density, u and v are the Cartesian
velocity components, and e is the total energy per unit
of volume. The flux vectors, F., E,, F, and F,, can be
defined as
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In the previous expressions, the components of the vis-
cous stress tensor can be written as
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The components of the heat flux vector can be obtained
by the Fourier law of heat conduction, and they can be
written in the present context as
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The specific internal energy, e;, can be related to the total
energy per unit of volume, e, as

e =

(W + v?) . (6)
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Moreover, the present work assumed that the ideal equa-
tion of state could be used and, hence, the pressure, p,
can be written as

p=(y—1)pe, ()

where 7 is the ratio of specific heats. The Reynolds num-
ber was defined in the present context as
Re = pat , (8)
[
where a is the speed of sound, £ is a characteristic length
of the geometry under study, and p is the fluid dynamic
viscosity coefficient. Finally, Pr is the Prandtl number.

The Euler equations can be simply obtained by ne-
glecting the viscous terms in Eq. (1), i.e., by neglecting
the E, and F, flux vectors. Hence, the following the-
ory will be presented for the general case of the Navier-
Stokes equations. Moreover, the discussion of the spatial
discretization of these equations will be conducted con-
sidering separately viscous and inviscid terms.

If the equations are discretized using a cell centered
based finite volume procedure, the discrete vector of con-
served variables, @;, is defined as an average over the i-th
control volume as

1
@=WAQW- ©)

In this context, the discrete flow variables can be assumed
as attributed to the centroid of each cell if necessary.
With the previous definition of @;, Eq. (1) can be in-
tegrated over the i-th control volume and, after the use
of the divergence theorem, it can be rewritten as

0
5 Q) + [ (Budy - Fodn)
t s,

— /(Evdy—de:c) =0. (10
A

Numerical Implementation

This section describes the most relevant aspects asso-
ciated with the discretization of the Euler or the Navier-
Stokes equations in the present context. Both spatial and
temporal discretizations are discussed, as well as aspects
related to the grid adaptation procedure here adopted.
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Spatial Discretization of Inviscid Terms

The convective operator, Ceony(Q;), corresponds to the
spatial discretization of the inviscid terms in the Navier-
Stokes equations. i.c.,

Cconv(Qi) = L (Ee dy - Fe da:) . (11)
Since the present work used a cell centered approach, the
control volume used for the integration of the governing
equations is composed of the triangular cells themselves,
regardless of the type of spatial discretization algorithm
used for the inviscid terms. In the present case, both
centered and upwind schemes have been implemented, in
an attempt to compare their relative advantages.

In the centered scheme case, the convective operator is
defined asl: %

3
Ceonv{@i) = Z [Ee(Qir) Ayix — Fe(Qur) Azir] .
= (12)

In this expression, @Q;; is the arithmetic average of the
conserved properties in the cells which share the ik in-
terface, where 7 is the i-th control volume and k is its
neighbor. Moreover, the & summation is performed over
the three neighbors of the i-th triangle. The terms Az;;
and Ay;;, are calculated as

Azip = (yk2 — Yr1), Ayir = (T2 — 251) , (13)

where the points (21, yx1) and (2, Yr2) are the vertices
which define the interface between cells i and £.[10]

For the case of the upwind schemes, the convective op-
erator can be written as

3
Ceonuo(@:) = Z[Ez’k Ayix — Fip Azgy) .

k=1

(14)

The various terms have the same meaning as before, ex-
cept that, in the present context, the inviscid interface
fluxes Ey and Fjp can be written, in the general case, as

EX(QL) + EZ (Qr) ,
FX(Qr) + F7 (Qr) .

Here, @1 and Qg are the left and right states at the ik in-
terface, and EZ and FF are split fluxes computed accord-
ing to the particular scheme chosen. Two different up-
wind schemes have been implemented in the present work,
namely the van Leer flux-vector splitting scheme!®: 4 and
the AUSM™* scheme presented by Liou®: 61, Moreover,
the upwind schemes were implemented both in their 1st-
and 2nd-order versions, which essentially amounts to as-
sume piecewise constant or piecewise linear variation of
flow properties within each cell, respectively. A detailed
discussion of the form in which these schemes were imple-
mented in the current unstructured context is presented
in Ref. [11], and it will not be repeated here. The inter-
ested reader is referred to the cited reference for all the
specific implementation details.

Ey =
Fir

(15)

It is worth emphasizing, however, that the Q; and Qp
properties are simply taken as the conserved properties
for the two triangles which share the particular interface,
for the Ist-order upwind implementation. Tor the 2nd-
order schemes, these left and right interface properties
are obtained from a MUSCL-type reconstruction4: 71 of
primitive variables on either side of the interface. The
linearly reconstructed states must be limited® in or-
der to avoid the creation of new local extrema. Several
limiters have been implemented in the code developed,
including the minmod, superbee, van Leer and van Al-
bada limitersS. However, all 2nd-order upwind results
here reported have used the minmod limiter. Previous
experience[l2] has indicated that the other limiters may
not converge to machine zero for the cases of interest in
the present work.

Artificial Dissipation

The upwind schemes automatically provide the arti-
ficial dissipation terms necessary to maintain nonlinear
stability. However, the centered scheme does requires
the explicit addition of an artificial dissipation opera-
tor in order to guarantee numerical stability during the
convergence process. The artificial dissipation terms im-
plemented in the present work used undivided Laplacian
and biharmonic operators in order to provide stability for
the scheme in the presence of flow discontinuities and to
avoid odd-even uncoupling of the solutions, respectively.
The particular implementation of the artificial dissipation
operator, D(Q;), adopted here is based on the work of
Mavriplis[13]. In this case, the artificial dissipation terms
are weighted by an average of the spectral radii of the
inviscid flux Jacobian matrices computed in the direction
normal to the corresponding control volume face.

Hence, the artificial dissipation operator, D(Q;), can
be written as

D(Q:) = d®(Q)) — d (@) ,

where d(?) (Q:) represents the undivided Laplacian oper-
ator and d*) (Q;) is the biharmonic operator. The un-
divided Laplacian operator is responsible for providing
stability in regions of discontinuities, and this operator
can be written as

(16)

2 - 5('2)
d2 Qi)=Y B

k=1

(Ai + Ap) (Qr — Qi) - (17)

The biharmonic operator is responsible for providing
background dissipation and for avoiding odd-even decou-
pling of the solutions. This operator was implemented
as

3.
d® Qi) = Z zzk
k=1

(Ai + Ar) (V2Qr — V2Q;) , (18)

where
3

V=) (Qr — Qi) .

k=1

(19)
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In the construction of the biharmonic operator, the con-
tribution of the k-th cell is neglected whenever £ repre-
sents a “ghost” control volume.

3 4
The ng) and 67(;,\.) terms are defined as

& = EPmax(y; , up)
G = maxfo, (KO -dD)] . (o)
The pressure gradient sensor is written as
3
v; = Zk:l lpx — pil (21)

Y ok +p)]

and this term is constructed such as to identify regions of
high gradients (e.g., shock waves). The K() and K®
constants have assumed the typical values of 1/4 and
3/256, respectively, usually suggested in the literaturel?].
The scaling terms, A;, are constructed proportional to
the maximum eigenvalue of the Euler equations in the
direction normal to the particular edge. The contribu-
tions of each edge are added up for all sides of the control
volume. Hence, these terms can be written as
3
A; = Z [luik Ayik — vik Azig| + aspy/A?, + Ayfk] )
k=1

(22)
where wu;r, vir and a;; are calculated as the arithmetic

average of the values of these properties in the i-th volume
and its k-th neighboring volume.

Spatial Discretization of Viscous Terms

The viscous operator, Cy;sc(Q;), corresponds to the
spatial discretization of the viscous terms in the Navier-
Stokes equations. Therefore, according to Eq. (10), one
could write

Conc@) = [ (Body = Fods) . (29)

In the present work, the viscous terms are discretized in
the usual way by the equivalent of a central difference-
type scheme. Hence, the viscous operator can be written
as

3
Cuise(Qi) = D [EB(Qut) Ayix — Fo(Qux)Aza] .

k=1
(24)
As before, Q. is the arithmetic average of the conserved
properties in the cells which share the ik interface.

The evaluation of the viscous flux vectors involves
derivatives of the flow variables. The procedure adopted
in the present work consisted in evaluating these deriva-
tives, for each control volume, by the application of
Green’s theorem!1 4. In this context, the derivative calcu-
lation is actually replaced by a line integral evaluation, in
the 2-D case, around an appropriate control volume. The
triangular control volumes themselves were selected for
this integration in the present work. The discrete values

¥

of the derivatives are, therefore, assumed constant within
each control volume, similarly to the approach adopted
for the conserved variables. The interface values of the
derivatives are also taken as the arithmetic average of the
corresponding derivative values in the two control vol-
umes which share the interface under consideration.

Temporal Discretization

After the complete spatial discretization process, the
governing equations indicated in Eq. (10) can be rewritten
as

’li‘(%l) + Cconv(Qi) - Cvisc(Qi) - D(Qz) = 0. (25)
Clearly, if only the Euler equations are being considered,
the Cyisc(Q:) operator is neglected. Similarly, if the dis-
cretization of the inviscid terms uses an upwind scheme,
the artificial dissipation operator, D(Q;), is set identically
equal to zero.

Time integration of these equations is performed
through a 2nd-order, 5-stage, explicit Runge-Kutta time-
stepping scheme? 131, The time integration method can
be written as

@ = ar,

o = P - w3t [c(@®) - p(e®)]
R O RICRIR
o = Q¥ - aa o (o) - p(0®)] .
o = o - wf[o(e) - p(a®)] .
o = P -l le(@®) - p(a)]
ot = QP (26)

Here, for easiness of writing, C(Q;) = Ceonv(Q;) —
Cuisc(@s). Moreover, the « coefficients were taken as
a; = — , @ = (27)

y X3 = 5, Cxg = ’a5:1a

1 1 1
4 6 8 2
as suggested in the literaturell: 21, According to Swan-
son and Ra,despiel[M], for the Navier-Stokes equations,
the artificial dissipation terms should be evaluated only
at odd stages of the time-stepping process. This has the
objective of obtaining CPU time economy and better sta-
bility conditions based on the hyperbolic/parabolic fea-
tures of the Navier-Stokes equations. In the Euler cases,

the artificial dissipation operator is only evaluated in the =

first and second stages of the time-stepping method, as
suggested in Ref. [9]. With regard to artificial dissipation
evaluation, the previous equations indicated the proce-
dure adopted for the viscous flow simulation cases.
Since all applications considered in the present work
dealt with steady state calculations, there was inter-
est in implementing convergence acceleration techniques.
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Hence, a spatially variable time step, for cach computa-
tional mesh cell, was used. The basic idea with this proce-
dure is to maintain a constant CFL number in the com-
plete calculation domain, allowing the use of adequate
time steps for each specific mesh region during the con-
vergence process. In this way, and according to the CFL
definition, it is possible to write

CFL Asceu .

Ate)) = Ceell
ce

(28)

Here, CFL is the Courant number, Asgel is a char-
acteristic length of the mesh, and Ccell 1s a character-
istic speed of information transport in the flow. In
the present finite volume formulation, As o] was cho-
sen as the smallest between the smallest cell centroid-
neighboring centroid distance and the smallest cell side
length. Moreover, the characteristic speed was taken as
Ceell = (Vu? 4 v2+a) g One should observe that this is
the maximum possible characteristic speed for the Euler
terms in the governing equations.

Grid Refinement Strategy

The grid adaptation procedure implemented in the
present work uses a sensor based on flow property gra-
dients. The general definition of the sensor adopted in
the present case could be expressed as

[Vén|

¢nmax - ¢n

max

(sensor), = 13

» (29)

min i
where ¢n = (pypauav’T) ’

»

and ¢,,.,, and ¢, are the maximum and the mini-
mum values of the ¢, property in the flowfield. Despite
this general definition, and despite having implemented
the complete sensor calculation as indicated in the above
equation, all results presented in this work have used a
sensor based on density gradients, i.e., ¢, = p.

The first step of the adaptive procedure is to compute
the flow on an existing coarse mesh. With this prelimi-
nary solution, one can calculate the sensor as previously
described. The code marks all triangles in which the sen-
sor exceeds some specified threshold value (the threshold
value will be denoted I' in the present paper), and the
marked triangles are refined. A new finer mesh is then
constructed by enrichment of the original coarse grid.

The mesh enrichment procedure consists of introduc-
ing an additional node for each side of a triangle marked
for refinement. For interior sides, this additional node is
placed at the mid-point of the side whereas, for boundary
sides, it isnecessary to refer to the boundary definition to
ensure that the new node is placed on the true boundary.
After this initial pass, the code has to search all trian-
gles to identify cells that have two or three divided sides.
Each of these cells is subdivided into four new triangles.
This subdivision may eventually mark new faces. There-
fore, this process has to be performed until there are no
triangles with more than one marked face. In order to

N\

(o] o %
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o © —>
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Figure 1: Schematic representation of the three possible
triangle subdivision processes.

avoid hanging nodes, the triangles that have one marked
face should be divided by halving. Figure 1 illustrates
the three possible ways of triangle subdivision.

The second part of the refinement process consists of
identifying all triangles which were refined by halving.
This information is stored for the next refinement step
because, if there is again an attempt to subdivide these
triangles by halving, this is not allowed. The experience
has shown that repeated triangle division by halving has
a strong detrimental effect in mesh quality. Therefore,
if the next refinement step tries to divide by halving a
triangle which was obtained by a previous division by
halving, the logic in the code forces the original triangle
to be divided into four new triangles before the refine-
ment procedure is allowed to continue. When the mesh
enrichment procedure has been completed, the new con-
trol volumes receive the property values of their “father”
triangle and the flow solver is re-started.

Results and Discussion

The present work considered the simulation of external
flow over an airfoil and internal flows in a convergent-
divergent nozzle and in a hypersonic inlet configura-
tion. For the external flow case and for the hyper-
sonic inlet cases, state variables were nondimensional-
ized with respect to freestream properties. For the
transonic convergent-divergent nozzle case, flow variables
were made dimensionless with respect to stagnation prop-
erties. Moreover, all computational cases considered
steady state calculations and the convergence criterion
adopted was to require that the maximum residue in the
calculation domain was smaller than 1075.

Inviscid Test Cases

The results obtained for an inviscid flow considered the
simulation of the flow in a hypersonic inlet configuration.
An entrance Mach number equal to 16 was considered.
The fluid was treated as a perfect gas, and no chemistry
was taken into account. The purpose of these simula-
tions was to compare the different schemes, previously
discussed, applied to high Mach number flows in order
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Figure 2: Adaptive mesh obtained using the 1st-order van
Leer scheme.

80 [ 2nd-order van Leer scheme
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Figure 3: Adaptive mesh obtained using the 2nd-order
van Leer scheme.

to verify if they were able to represent the flow features,
such as strong shocks, shock reflections and interactions,
and expansion regions.

To analyse the different schemes, an adaptive refine-
ment process was used with a sensor based on density gra-
dients. The initial mesh had 399 nodes and 683 volumes.
Figures 2, 3, 4 and 5 present the final meshes obtained
with the four spatial discretization schemes. The three
passes of the refinement procedure have used threshold
values I' = (0.01 , 0.01 , 0.01) for the solutions with the
van Leer scheme and I' = (0.001, 0.001, 0.001) for the
corresponding solutions with the Liou scheme. The expe-
rience has shown that it was necessary to have more strin-
gent values of the threshold limit with the Liou scheme
than with the van Leer scheme, in order to obtain meshes
of comparable refinement. The CFL number used for the
van Leer solutions and for the 1st-order Liou scheme was
equal to 0.2, while 0.005 was used for the 2nd-order Liou
scheme. The 1st pass of the adaptive process was per-
formed at the 500th iteration of the flow solver, whereas
the 2nd and 3rd passes were performed on the 1300th and
2500th iteration, respectively. The regions of high gradi-
ents were adequately refined by all the schemes. The

s | 1st-order Liou scheme
9332 nodes - 18088 volumes
60 +

40 F

20 -

o 50 100

Figure 4: Adaptive mesh obtained using the Ist-order
Liou scheme.

2nd-order Liou scheme
6521 nodes - 12617 volumes

80 -

60 |-

40

20 -

Figure 5: Adaptive mesh obtained using the 2nd-order
Liou scheme.
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Figure 6: Mach number contours obtained using the 1st-
order van Leer scheme (M., = 16).
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Figure 7: Mach number contours obtained using the 2nd-
order van Leer scheme {if = 16).

2nd-order van Leer and Liou schemes generated coarser
meshes, compared with their Ist-order counterparts. One
can also observe that. at the exit of the hypersonic inlet
configuration, all the schemes presented a good refined
mesh.

The corresponding Mach number contours computed
with the schemes are presented in Figures 6, 7, 8 and 9.
It is clear that the lst-order van Leer and Liou schemes
smoothed out the spatial gradients by the intrinsic arti-
ficial dissipation present in upwind implementation with
only lst-order accuracy. Moreover, the lst-order van Leer
scheme seems to be more dissipative than the lst-order
Liou scheme. The reason for this comment can be clearly
seen if one compares the upper and lower wall entrance
shock resolution. The 2nd-order Liou scheme achieved
the best shock capture in the sense that the shock is the
least smeared in comparison with the other methods. On
the other hand, this scheme presented the strongest os-
cillations near the lower wall entrance shock.

One can observe that the phenomena present at the
exit of the inlet configuration were well captured by both
versions of the Liou scheme. It is clear that more infor-
mation about the fluid flow in this region can be obtained

| 1st-order Liou scheme
9332 nodes - 18088 volumes

Figure 8: Mach number contours obtained using the 1st-
order Liou scheme (M., = 16).
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Figure 9: Mach number contours obtained using the 2nd-
order Liou scheme (Mo, = 16).

from Figs. 8 and 9 than from the corresponding results
with the van Leer scheme. Moreover, in the region just
upstream of the geometric throat, the van Leer scheme
presented a different solution than that obtained with
the versions of the Liou scheme. This is particularly true
if one considers the shock that appears due to the upper
and lower shock interaction. Furthermore, the versions of
the van Leer scheme could capture the expansion region
after the first deflection on the lower wall. The 1st- and
2nd-order versions of the Liou scheme could not detect
such phenomenon, and the shock is nearly parallel to the
wall.

Viscous Test Cases

In the viscous studies performed in the context of the

present work, although the Reynolds number in all sim-

ulations was characteristic of turbulent flow regimes, no
turbulence model was implemented. This should be seen
as a preliminar development stage, in which laminar flow
simulations are performed, before attempting to imple-
ment appropriate turbulence models. The first test case
considered the flow in a transonic convergent-divergent
nozzle. The computational mesh was generated by a
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Figure 10: Unstructured mesh for the transonic nozzle
problem.
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Figure 11: Pressure contours in the transonic nozzle prob-
lem.

structured, algebraic grid generator, with 61 points in
the direction along the nozzle axis and 40 points in di-
rection normal to nozzle wall. An exponential stretch-
ing with 10% stretching factor was used to cluster grid
points towards the nozzle wall and towards the throat.
This structured mesh was later triangulated yielding an
unstructured grid with 4, 680 triangular real volumes and
2,440 nodes. This mesh is shown in Fig. 10.

Stagnation conditions were used as initial conditions for
the present simulation for the complete domain, except
at the exit boundary where a reduction in pressure and
density was imposed in order to initialize the flow. The
exit pressure was set low enough in order to obtain super-
sonic flow in the nozzle divergent section. The Reynolds
number was set to 1 million and the Prandtl number was
selected as 0.72. Figure 11 presents the pressure contours
obtained with the centered scheme previously described.
It is possible to observe that the weak shock wave near
the throat is well captured by the method, without the
need for any modification in the artificial dissipation coef-
ficient values. Thisis an evidence of the accurate behavior
of artificial dissipation operator implemented. Figure 12
shows the Mach number contours obtained with the same
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Figure 12: Mach number contours in the transonic nozzle
problem.
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Figure 13: Unstructured mesh for a NACA 0012 airfoil.

scheme. Results are in good agreement with available ex-
perimental results, again emphasizing the good features
of the artificial dissipation operator in avoiding competi-
tion between artificial dissipation and natural dissipation.

The next case considered transonic flow over a NACA
0012 airfoil. The mesh was also generated as an struc-
tured, O-type mesh, with 49 x 60 grid points in the wrap-
around and wall-normal directions, respectively. An ex-
ponential stretching with 10% stretching factor was used
in the wall normal direction. After triangulation, this has
yielded 5,664 triangular real volumes and 2,940 nodes.

* This unstructured mesh is shown in Fig. 13. The far field

was located at 25 chords lengths from the airfoil.

In this case, the freestream Mach number was set to
1.0 and the angle of attack was set to zero. The Reynolds
number was selected as 10 million, and the Prandtl num-
ber was also set to 0.72. Pressure and mach number con-
tours obtained for the solution with the centered scheme
are presented, respectively, in Figs. 14 and 15. Since the
flow conditions in the present case are more severe than
those of the transonic nozzle problem, there was a need
to modify the K(?) and K artificial dissipation coeffi-
cients with respect to the standard values suggested in
the literaturel?). The values adopted in the present case
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Figure 14: Pressure contours for the NACA 0012 airfoil
problem (M, = 1.0 and Re = 10 million).

Figure 15: Mach number contours for the NACA 0012
airfoil problem (Ms, = 1.0 and Re = 10 million).

were N{(?) = 0.4 and K = 0.03. This amount of artifi-
cial dissipation was necessary to guarantee a stable con-
vergence to steady state without introducing too much
degradation of the global solution quality.

The final test case simulated with a viscous formulation
considered the same hypersonic inlet discussed in the pre-
vious section. In this case, a mesh with 4,900 grid points
and 19, 044 triangular elements was generated. This mesh
is shown in I'ig. 16. Flight conditions for the present sim-
ulation considered an entrance (freestream) Mach number
My = 15 and the flow aligned with the inlet axis. The
Reynolds number, based on the total inlet length, was set
to 1.0 x 10°. which is consistent with flight at approxi-
mately 35 km. This simulation also assumed Pr = 0.72.
As previously discussed, the present simulation has not
considered any real gas effects which certainly would oc-
cur for flight at such extreme conditions. Hence, this
should be seen as cold gas hypersonic simulations for an
evolutionary validation of the capability implemented.

From the numerical point of view, the hypersonic inlet
case represented a much more severe test case, as also
discussed in the context of the inviscid simulations. For
the viscous results here reported, the CFL number was
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Figure 16: Computational grid used for viscous simula-
tions of the hypersonic inlet case.
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Figure 17: Pressure contours for viscous simulation of the
hypersonic inlet problem (M = 15 and Re = 10°).

selected as 0.1. The centered scheme was still used in this
case, but it was necessary to increase the artificial dissi-
pation model constants to K(*) = 0.65 and K*) = (.04,
in order to maintain numerical stability. Pressure and
Mach number contours for this simulation are presented
in Figs. 17 and 18, respectively. One can see from these
figures that there is a good qualitative agreement of the
overall inviscid features of the flow between the inviscid
results previously discussed and the present calculations.
although the former have been computed with upwind
schemes.

Clearly, however, the viscous simulations allow for fuz-
ther study of the flow in the inlet. In particular, the
viscous calculations have indicated that there is flow sep-
aration on the lower inlet wall. A fairly distinctive sep-
aration bubble on the lower wall can be seen in Figs. 19
and 20, which present velocity vector plots for this solu-
tion. These results seem to indicate that the flow sepa-
ration is somehow coupled to the shock-shock interaction
phenomenon which occurs further downstream along the
inlet, at the location in which the separation bubble has
its largest dimension in the crossflow direction. The addi-
tional details of the separated region along the lower inlet
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Figure 18: Mach number contours for viscous simulation
of the hypersonic inlet problem (Mo, = 15 and Re = 10%).
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Figure 19: Flow separation along the lower wall in the
hypersonic inlet problem (My, = 15 and Re = 10%).

60.00  70.00 80.00 90.00  100.00

Figure 20: Detail of flow separation upstream of first ex-
pansion corner along the lower wall in the hypersonic inlet
configuration (Ms = 15 and Re = 10%).
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Figure 21: Detail of flow separation downstream of first
expansion corner along the lower wall in the hypersonic
inlet configuration (Mo, = 15 and Re = 10°).

wall, shown in Fig. 20, were obtained by zooming on the
region just upstream of the first expansion corner on the
lower wall. The shock-shock interaction region is clearly
seen in Figs. 19 and 20. Moreover, the fairly strong re-
circulation region which is formed just underneath this
Interaction is also evident from Fig. 20. The correspond-
ing expanded view of the region downstream of this first
lower wall expansion corner can be seen in Fig. 21. These
figures also show that there is a considerable reduction
in the lateral extension of the separation bubble at the
first lower wall expansion corner. Further downstream of
this point, the crossflow extension of the separation bub-
ble again increases and the flow finally reattaches at the
second lower wall expansion corner. One should observe,
however, that the present calculations are laminar Navier-
Stokes simulations. Therefore, flow separation character-
istics could be rather different if a turbulence model were
implemented in the code.

Concluding Remarks

The present work performed the implementation and
validation of unstructured grid, mesh refinement tech-
niques for 2-D inviscid and viscous flow simulations. The
governing equations were discretized in an unstructured
triangular mesh by a cell centered finite volume algo-
rithm. The equations were advanced in time by an ex-
plicit, 5-stage, 2nd-order accurate, Runge-Kutta time
stepping procedure. The spatial discretization consid-
ered a central difference-type scheme and two upwind
schemes, namely a van Leer and a Liou flux-vector split-
ting schemes with both 1st- and 2nd-order implementa-
tions.

The inviscid results were obtained for cold gas flow in
a hypersonic inlet. The tests performed considered the
comparison of the results obtained with the four differ-
ent upwind spatial discretizations schemes for this prob-
lem. The inlet entrance conditions were My, = 16 and
flow aligned with the inlet axis. Moreover, the fluid was
treated as a perfect gas. Clearly, for actual flight condi-
tion simulation, real gas effects would have to be taken
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into account. Here, however, the consideration of very
high Mach number flows had simply the objective of test-
ing the behavior of the different schemes in the presence
of strong shocks.

The implementation of the 2nd-order versions of the
two upwind schemes used MUSCL reconstruction in or-
der to obtain left and right states at each interface. The
2nd-order versions of the upwind schemes require the im-
plementation of limiters in order to try to minimize os-
cillations at discontinuities. A few different limiters were
actually coded, but only results with the minmod limiter
were reported here. The lst-order methods caused con-
siderable smearing of the flow discontinuities due to the
excessive artificial dissipation intrinsically added. Among
the various schemes implemented, the 2nd-order upwind
methods have provided the best shock capturing capa-
bility. The shock resolution obtained with the 2nd-order
Liou scheme was slightly better than that provided by
the 2nd-order van Leer method. The mesh adaptation
procedure implemented was able to generate good qual-
1ty meshes for the inviscid cases considered in the present
work.

Viscous simulations have considered airfoil flows, tran-
sonic convergent-divergent nozzle cases and the hyper-
sonic inlet configuration. All cases were run using the
central difference-type spatial discretization scheme. The
results obtained were quite encouraging, since all calcu-
lations have shown good qualitative agreement with the
expected flow features. Clearly, further work and valida-
tion are still necessary in the viscous cases. In particu-
lar, testing of the adaptive refinement capability in the
viscdus cases and the implementation of adequate turbu-
lence models are the next steps in the continuation of the
present development effort.
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