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Abstract

Higher-order far-field computational boundary
conditions have been developed for CFD
(Computational Fluid Dynamics) caiculation of
inviscid external flows. They are derived from
analytical solutions of an asymptotic form of the
steady state Euler equations and have improved
accuracy compared to commonly-used characteristic
boundary conditions.  The analytical solutions
provide for a smooth transition across the boundary
to the true far-field conditions at infinity. The Euler
equations are asymptotically linearized about this
constant pressure, rectilinear flow condition.
Because the Euler equations are used to develop the
boundary conditions, the flow crossing the boundary
can be rotational (i.e., applicable to transonic flow
calculations). The boundary conditions can be used

with any numerical Euler solution method and allow -

computational boundaries to be located very close to
the nonlinear region of interest. This leads to a
significant reduction in the number of grid points
required for a CFD solution. Because of the
proximity of the boundaries, convergence rate of the
solution is also increased because fewer iteration
steps are required to propagate information between
upstream and downstream boundaries. If viscous
dissipation is neglected in the far field, the boundary
conditions can also be used with Navier-Stokes CFD
codes. The procedure also demonstrates the
synergism that can be realized from coupling
analytical and computational methods.

Introduction

Numerical solution procedures for nonlinear
fluild dynamic equations usually use one or more
-artificial computational boundaries located at some
distance from the primary region of interest in order
to limit the physical domain to finite size. If the flow
crossing such a boundary (either inflow or ocutflow) is
subsonic, then some type of computational boundary
conditions must- be imposed which simulate the
influence of the true far-field conditions at infinity.
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For steady state external flow problems, these
conditions are constant pressure, rectilinear flow.

The computational boundary conditions must be
such that waves crossing the boundary do not
produce erroneous reflections back into the
computational field to degrade the calculations. It is
generally acknowledged that it is inappropriate to
simply impose free stream conditions (or conditions
at infinity) at computational boundaries because of
the spurious reflections back into the computational
domain which are produced. Standard practice has
consisted of locating the boundaries quite far from
the region of interest in an attempt to simplify the
boundary condition models and minimize any effects
of inconsistent modeling. The net effect is a
significant increase in the number of grid points
required for an accurate flowfield calculation.

Boundary modeling procedures for two-
dimensional (2D) internal and external flows were
presented in References 1 and 2 which reduce the
drawbacks mentioned above and allow the
computational boundaries to be located much closer
to the nonlinear region of interest. The approach is
limited to steady, inviscid flow, although the flow
can be rotational. It represents a logical higher-order
extension of the so-called characteristic (or zero-
order) boundary conditions applied locally which are
commonly used with inviscid or viscous numerical
solution methods. It also illustrates a consistent
procedure for coupling linearized analytical solutions
with nonlinear numerical solutions by means of
computational boundary conditions.  Preliminary
extension to three-dimensional (3D) external flow
problems was presented in Reference 3.

Use of local zero-order boundary conditions for
internal or external flow problems requires that the
computational boundaries be located far from the
nonlinear near-field region. Close placement of the
boundaries may result in a significant amount of
solution degradation.  The present higher-order
procedure is derived from the Euler equations.
Therefore, it is applicable to flows which have strong
entropy producing effects (e.g., shock waves) within
the computational region. Such effects can produce
large variations in density and Mach number in the
far-field in the direction normal to streamlines (i.e.,
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an entropy wake) that persist to infinity and that
cannot be treated as small perturbations. A potential
flow model (e.g., vortex correction due to lift or some
3D equivalent) of such a far-field having a vorticity
wake is inappropriate because its perturbations decay
to zero at infinity.

A large number of boundary condition models
have been proposed in the literature during the past
two decades, and a number of the more prominent
works are cited herein (References 4-9). The most
noteworthy models are the non-reflecting boundary
conditions that strive to suppress erroneous
reflections from the boundary back into the
computational domain by eliminating all incoming
waves. The assumption that nothing occurs beyond
the boundary which propagates any meaningful
information toward the computational domain is
questionable unless the boundary is far removed and
incorrect if the flow is rotational. The models are
typically derived by linearizing the steady or
unsteady fluid dynamic equations (usually Euler)
about constant far-field conditions and solving the
resulting system assuming a generalized waveform.

However, their utility is compromised if strong

rotational effects are produced within the
computational domain because flow variables other
than pressure and flow angle are not constant in the
far-field if the flow is treated as inviscid. In that
case, linearization in terms of primitive or
conservative variables yields perturbation quantities
that do not vanish at infinity. Moreover, linearization
about average far-field conditions becomes
questionable if rotational effects are strong.
Streamline-normal gradient variations can be
significant, which cause strong interactions to persist
in the far-field.

The analysis outlined herein starts from a 3D
Euler description in physical space with velocity and
flow angles as dependent variables. The equations
are rewritten in a linear form derived from the
asymptotic far-field behavior wherein pressure is
constant and streamlines are rectilinear (true
“conditions at infinity). The asymptotic analysis
allows rotational effects to be taken into account by a
change in dependent variable and eliminates the need
to linearize the thermodynamic relations. Higher-
order compressibility effects that vanish at infinity
are treated as right-hand-side (RHS) source terms
which are neglected in the far-field asymptotic
analysis. These simplified equations are assumed
applicable in the far-field region beyond a
computational boundary where nonlinear effects are
mild.
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This  development of improved far-field
boundary conditions has as its goal the improvement
of CFD code efficiency by reducing computational
grid size requirements. This is accomplished by
allowing artificial boundaries to be placed more
proximate where only mild nonlinear effects occur.
As was demonstrated in the analysis of Reference 2
for 2D flow, the boundary conditions necessarily
depend on the shape of the boundary if they are
located where nonlinearities exist. For 2D
applications, the boundary shape can be arbitrary
while for 3D the analysis is carried out for a
computational domain bounded by planar surfaces, as
sketched in Figure 1. Construction of a CFD grid
which conforms to such an outer boundary shape is
not overly restrictive for current grid generation
tools, especially unstructured grid methods. The
asymptotic form of the Euler equations is solved
analytically for the flowfield exterior to the boundary
by integral transform techniques.

Coupling of this global analytical solution with
the nonlinear numerical (CFD) solution is
accomplished by the boundary conditions in an
unambiguous manner. The analytical solutions
provide a smooth transition across the computational
boundary to the true far-field conditions at infinity.
The higher-order boundary conditions are in the form
of global distributions of flow quantities to be
imposed over the boundary, not constant conditions.
They represent a logical asymptotic extension of
zero-order local conditions for external flows. The
additional computational effort required to impose
the higher-order boundary conditions is modest.
Furthermore, the boundary analysis can be coupled
with any inviscid numerical solution method. It can
also be coupled with a viscous method by expressing
a wake as a vorticity distribution and convecting this
distribution downstream via the Euler analytical
model, as demonstrated in Reference 10. Viscous
dissipation downstream of the boundary is neglected
in such an implementation.

Results are presented which establish the validity
of the exterior flowfield solutions and boundary
conditions. Results using the higher-order boundary
conditions are compared with those using zero-order
conditions for non-isentropic transonic flows. The
CFD code used for the numerical solutions is FLO67

‘(Reference 11). It is demonstrated that the far-field

boundaries can be located very close to the body with
no loss in accuracy. The reduction in number of grid
points required is substantial.
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Analvtical Formulation

The system of Euler equations asymptotically
linearized about a constant pressure far-field state is
derived in this section. The formulation is valid for
both isentropic and non-isentropic flow conditions.

The three-dimensional form of the steady state
Euler equations to be used is
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The RHS terms include higher-order compressibility
effects and are defined as
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. Velocity magnitude and speed of sound are denoted
by q and a, respectively, and Q is the logarithm of
velocity normalized by a reference velocity G,
defined below. The flow angles 6 and ¢ are defined
in Figure 2. For two-dimensional flow ¢ is zero. The
local Mach number is M and entropy S is defined in
terms of pressure p and density p as
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Physical plane Cartesian coordinates are denoted by
(x,y,2) and the ratio of specific heats by y. The fact
that entropy remains constant along streamlines has
been incorporated into Egs. (1).

The x-axis can be aligned with the free stream
direction without loss of generality. Since 8 and ¢
then vanish at infinity, the asymptotic form of Egs.
(1) in the far-field becomes
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For non-isentropic flow, M., varies normal to the
entropy wake in the downstream far field.

Using the definition (4) and the algebraic total
temperature relation (2), the far-field Mach number
M. can be expressed as
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2
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The reference speed of sound, velocity, and Mach
number are defined as

Eoo = pg_l)lzy
— 2 —
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and are based on the assumption that the far-field
pressure p.. is constant.

Defining a new dependent variable which
includes the far-field entropy by
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where

2

B2 =1-M_, (10)

Three sets of coordinates are used to develop the
far-field solution beyond a planar boundary. Their
relationship is shown in Figure 3. The far-field
planar grid boundary is coincident with the (Y,Z)
plane of the body system (X,Y,Z) related to the
computational CFD grid. The X-axis is outwardly
normal to the boundary. As stated earlier, the x-axis
of the wind system (x,y,z) is parallel with the
far-field flow direction, pointing downstream for an
outflow boundary and upstream for an inflow
boundary. This system is rotated about the x-axis
such that the z-axis lies in the (Y,Z) boundary plane.
The flow angles 6 and ¢ are measured with respect to
the wind system as shown in Figure 2. The
computational system (£,1,0) has & coincident with
X, € coincident with z, and 1 lying in the (x,y) plane.
The (M,{) plane coincides with the computational
boundary plane (Y,Z). The angle between the
boundary normal &-axis and the x-axis is denoted by
®; § is zero on the boundary plane. The angle ® is

related to angle of attack and angle of yaw. The .

computational (analytical) and wind coordinate
systems are related by

’

E=x cos @ - y sin @
MN=X sin ® + y cOs ® (11)
L=z

These additional coordinate systems are not required
for 2D flow, as shown in Reference 2.

In terms of the computational coordinates, the
asymptotic equations (9) become
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Further simplification is achieved by the transforma-
tion
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which includes a Prandtl-Glauert scaling. Egs. (12)
then become
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The boundary plane corresponds to u = 0.

Solution Procedure

The homogeneous system (15) provides a
higher-order model of the flowfield beyond the
computational boundary. The numerical solution
inside the boundary propagates information of
different type to the inflow and outflow portions of
the computational boundary, as described in
Reference 12. This differing information serves as
boundary conditions for Eqgs. (15). The procedure for
solution of these equations using Fourier integral
transforms is presented in this section. The 2D
procedure presented in Reference 2 is somewhat
simpler, but follows the same pattern.

The Fourier transformations defined by

f=| QeMdav F EJ f eM¥dw

g=| 6eMav G E_[ g €M dw (16)
o — o0 —oa -

h=| ¢eMdv H= J' h €*¥aw

reduces the system (15) to the ordinary differential
equations
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The solution of this system is
F ABT—iBy(B* +thHu® + B2
G |=CjAp? +it,/(]32 +THu? +pW2 et (18)

H n? +1%)

where the eigenvalue b is
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and C represents transformed CFD solution boundary
values in the computational grid boundary plane.
Inversion of the transforms (16) provides the solution

for Q, 6, and ¢.

For the field downstream of an outflow planar
boundary, the inversion process gives
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The quantities éb and ¢, represent information

propagated to the computational grid boundary by the
CFD solution. Likewise, for the field upstream of a
planar inflow boundary, the inversion process gives
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The quantity Q, represents information propagated
to the boundary by the CFD solution. This
information is typically in the form of the Riemann
variable q - 2a/(y-1). Using the total temperature
relation (2), this quantity can be expressed in terms of
boundary velocity q,, and subsequently Q,, in a
straightforward manner. The quadrature in Egs. (20),
(23) and (24) is performed over the computational
boundary surface. The coordinates (u1,5) lie in the
boundary plane.

Development of Boundary Conditions

At a subsonic far-field computational boundary
there are four downstream- and one upstream-
running  wave(s). Therefore, the information
available from the numerical solution is not complete
and differs at inflow and outflow boundaries. The
information lacking must be provided by the
boundary conditions. If the flow is supersonic, all
waves are downstream-running and specification of
boundary conditions is straightforward.

Far-field computational boundary conditions
(subsonic) are developed in this section based on the
solution of the higher-order Euler model derived in
the previous section. This solution is assumed valid
in the region beyond the computational boundary
where nonlinear effects are not large. Within the
computational boundaries the full nonlinear Euler
equations must be solved numerically. The boundary
conditions provide for a smooth coupling of the
nonlinear and far-field solutions so that the true
conditions at infinity can be imposed.

The boundary conditions are derived from the
analytical solutions (20), (23) and (24) by a limit
process wherein u(=E) approaches zero. This is an
extension of the two-dimensional procedure
described in Reference 2. When u=0 the coordinates
(v,w) (and (u,0))align with the (1,{) coordinates
which lie in the (Y,Z) computational grid boundary
plane. The quadrature required in the analytical
solutions can be carried out by superimposing a
rectilinear (v,w) grid on the (Y,Z) plane and
interpolating the numerical CFD data onto this grid.
Since the computational boundaries are finite (see

Figure 1), the numerical information Q,,8, and ¢,

‘must be extrapolated beyond the edge of the

boundaries in order to carry out the quadratures. A
low-order polynomial in inverse powers of distance is
adequate. The extrapolated regions do not contribute
significantly to the overall integration result since

Q,. 8, and ¢, are relatively small beyond the edges of
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the boundary. This approach was used successtully
in Reference 10 for two-dimensional flows.

Inflow Boundary

Along the inflow portion of the boundary
(isentropic conditions assumed), there are three
downstream-running waves propagating information
to the boundary from outside the computational
domain (i.e., from upstream infinity) and one
upstream-running wave propagating information
from the numerical CFD solution (see Reference 12).
The incoming information is represented by the
Riemann variable q + 2a/(y - 1) and the flow angles 0
and ¢. The outgoing information is represented by
the Riemann variable q-2a/(y-1). The solutions
(23) and (24) provide two of the lacking information
elements from outside the computational domain; the
remaining information is provided by the total
temperature relation (2).

The numerical solution propagates the Riemann
variable g —2a/(y- 1) to the boundary which can be
converted to q, (and Q, ) as explained earlier. Using

the total temperature relation the boundary
distribution of the downstream propagating Riemann
variable (i.e., the boundary conditions) is calculated
according to

2 2 1
[q+;—7al e (25)
C

The distribution of flow angles on the inflow
portion of the computational boundary is provided by
the solutions (23) and (24) as

5 be =———11mj- j
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Within  the integrals Q, represents velocity
information propagated to the inflow boundary by the
numerical solution, as explained above. This
information provides the boundary data for the
upstream analytical model. The singularities in the
Green's function G are integrable. They can be
removed by using an appropriate approximation (e.g.,

I18011001.D0OC

bilinear) for Q, over individual rectilinear cells with
subsequent integration by parts.

Zero-order  (or  characteristic)  boundary
conditions would consist of imposing the constant
values q,,+2a_ /(y —1), © = constant, and ¢ = constant

along the inflow portion of the boundary.

Outflow Boundary

Along the outflow portion of the boundary there
are four (three for isentropic conditions) downstream-
running waves propagating information to the
boundary from the numerical solution and one
upstream-running wave propagating information
from outside the computational domain (i.e., from
downstream infinity). The solution (20) provides the
lacking information from outside the computational
domain.

In the limit as u approaches zero, the solution
(20) may be written

Q="E€3‘L‘é_[ J. {iv-w

+-B-u]eb +(w=0)9, }G dudo

(28)

The quantities 6, and ¢, represent numerical CFD

solution information propagated to the outflow
portion of the boundary and provide the boundary
data for the downstream analytical model. A suitable
approximation for 6, and §, over rectilinear cells

allows integration by parts and removal of the
Green's function singularities.

From the definition (8) the velocity distribution
along the outflow portion of the boundary obtained
from the analytical solution is

12
azetis-] el (29)

where Q is obtained by quadrature from the relation
(28). The quantity S_ can be approximated by

numerical solution values of S at the boundary for
non-isentropic  conditions. This approximation
neglects streamline curvature downstream of the
boundary. Using the total temperature relation (2),
the boundary distribution of the upstream
propagating Riemann variable (i.e., the boundary
conditions) is calculated according to
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The value of q under the radical is obtained from
Eq.(29) and the remaining RHS term represents
information propagated to the boundary by the
numerical solution.  This formulation uses the
analytical solution to describe the pressure field
exterior to the outflow boundary.

Conventional practice using zero-order boundary
conditions would consist of imposing the constant
value q,-2a,/(y-1) along the outflow portion of the

boundary.
Resuits

The boundary condition procedures developed
above have been implemented in the CFD code
FLO67 (Reference 11). Results are presented in this
section which compare the higher-order boundary
conditions with the commonly-used zero-order

conditions.  Calculations are presented on grids '

where the boundaries are very close to an airfoil (2D
application) and a wing (3D application). The
boundaries are approximately one characteristic
length away from the bodies. Accuracy is assessed
by comparing with a large-grid baseline solution.

Typical results for 2D application of the higher-
order boundary conditions are presented in
Figures 4-9. Baseline results for the NACA 0012
airfoil were calculated using FLO67 on a large C-grid
whose far-field boundary was located approximately
40 chord lengths from the airfoil. This distance was
sufficiently large that the zero-order (characteristic)
and higher-order boundary conditions produced
almost identical results. The calculations were
repeated on a much smaller C-grid using both the
zero-order and higher-order boundary conditions.
The small grid boundaries were very close to the
- airfoil (approximately one chord). These small grid
results are compared with the baseline results from
the large grid in order to assess the higher-order
boundary condition accuracy.

The small core grid shown in Figure 4 had 241
points in the circumferential direction and 41 points
in the radial direction. It extended one chord length
upstream of the airfoil leading edge and one chord
length downstream of the trailing edge. There were
177 points on the airfoil surface. The large baseline
grid had dimensions 305 x 73 and was constructed by
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simply adding C-lines outside the core grid inflow
boundary and vertical lines downstream of the
outflow boundary. It extended approximately 40
chord lengths upstream and downstream of the
airfoil. The relative locations of the outer boundaries
of the two grids are shown in Figure 5.

Transonic surface pressures predicted by the
FLO67 code using the core grid of Figure4 are
presented in Figure 6. The free stream Mach number
was 0.80 and the angle of attack was 2 degrees.
Results for both zero-order and higher-order global
boundary conditions are shown along with baseline
results from the large grid.  The higher-order
boundary conditions produced results nearly identical
to the baseline results, while the zero-order boundary
conditions produced considerable solution
degradation. The most noticeable effect of the zero-
order boundary conditions is the incorrect prediction
of the shock location and strength. Pressure contours
are shown in Figures 7 and 8. Similar results are
obtained for O-grid topologies (see Reference 2).

Overall consistency of the global boundary
condition procedure is demonstrated by the transonic
Mach number contours shown in Figure 9. Near-
field contours from the FLO67 computation on the
small O-grid match smoothly with the far-field
contours from the analytical solution, including the
non-isentropic  portion of the field. The
computational boundary shape was elliptic to
simplify the calculation of the far-field analytical
solution and its contours. The boundary was situated
approximately one chord length above the airfoil to
lie outside of the embedded supersonic region on the
upper surface.

The wing used for the 3D calculations had
constant chord NACA 0012 airfoil sections and an
aspect ratio of 5.2. A large baseline C-grid was
constructed about the wing whose outer boundary
extended about 40 chord lengths upstream,
downstream and  vertically. It  extended
approximately 5 span lengths from the tip in the
lateral direction. The baseline grid had dimensions
(257x65x25). Resuits from this baseline grid were
used to assess the accuracy of the higher-order
boundary condition model when applied to a smaller

grid.

The small grid boundaries extended
approximately 2 chord lengths upstream and
downstream of the wing. The small grid had
dimensions (193x41x25) and was coincident with the
inner portion of the baseline grid. The boundaries of
the small grid were planar, as indicated in Figure 1.
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Transonic surface pressures predicted by the
FLO67 code using the small grid are shown in
Figure 10. The free stream Mach number was 0.70
and the angle of attack was 5 degrees. Pressure
coefficients are shown on the center-plane and at 52
percent semi-span. Results for both zero-order and
higher-order boundary conditions are compared along
with baseline results from the large grid. The higher-
order boundary conditions produced results nearly
identical to the baseline results, while the zero-order
boundary conditions produced typical solution
degradation, primarily in the vicinity of the shock
wave. Pressure contours at 52 percent semi-span, are
shown in Figures 11. Pressure contours at 95 percent
semi-span are shown in Figure 12 for a free stream
Mach number of 0.40 and an angle of attack of 8
degrees.

Large efficiency gains can be achieved by
incorporating more accurate far-field boundary
conditions into numerical flowfield solution methods.
The number of computational grid points for a given
accuracy level can be reduced typically by a factor of
2 by using higher-order conditions. Only a modest
increase (approximately 2 percent) in computational
effort is required for the higher-order conditions. An
additional efficiency gain is also provided in that
fewer iterations are typically required for solution
convergence because of the closer proximity of the
far-field boundaries.

Summary

Far-field computational boundary conditions
have been developed for 2D and 3D external flow
problems. These higher-order boundary conditions
are derived from analytical solutions of an asymptotic
form of the Euler equations and represent a logical
extension of the zero-order (or characteristic)
boundary conditions commonly used in the numerical
solution of nonlinear fluid dynamic equations.
Transformations are introduced which lead to linear
equations to be solved in the far field, but the fluid
dynamic variables are not linearized and small

- perturbations are not assumed. Asymptotic vorticity
effects are incorporated into the dependent variable
velocity function making the analysis valid for
rotational flow. The equations are solved using
integral transform techniques giving an analytical
description of the flowfield beyond the CFD
computational boundaries.

The boundary conditions and analytical solutions
provide a smooth transition across a computational
boundary to the true far-field conditions at infinity.
The boundary procedure is general in that it can be
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used in conjunction with any inviscid numerical
solution method. Because the boundary conditions
are derived from the Euler equations, the flow
crossing the boundaries can be rotational (non-
isentropic) and they can be used for calculating
transonic flows containing shock waves. The higher-
order global boundary conditions allow the far-field
boundaries to be located much closer thereby
reducing the number of grid points needed for the
numerical solution and also the number of iterations
for solution convergence. This allows a significant
reduction in the amount of computational effort (i.e.,
increased efficiency) required for the nonlinear
numerical  solution because the additional
calculations required for the higher-order boundary
conditions is modest.

Representing the vorticity distribution of a
viscous wake as an entropy distribution and allowing
this wake to convect downstream undamped allows
the boundary conditions procedure to be used with
Navier-Stokes codes for viscous calculations. This
viscous flow application is only an approximation,
since the Euler analytical far-field model preserves a
vorticity wake to infinity, whereas a viscous wake
eventually decays.
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Fig. 2 Flow Angle Definition.
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Fig. 3 Coordinate System Definition.
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Fig. 4 Core Grid for NACA 0012 Airfoil.
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Fig. 5 Relative Boundary Locations of Baseline and

Core Grids.
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Fig. 10 Surface Pressure Predictions Using Zero- and Higher-Order Boundary Conditions.
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Fig. 12 Pressure Contours Predicted Using Zero- and Higher-Order Boundary Conditions.
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