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ABSTRACT

In this paper, we investigate a novel method for the
inverse design of airfoil sections using artificial neural
networks (ANNs). Work on artificial neural networks
has shown that ANNs can be used to emulate highly
nonlinear relationships, such as that existing between
surface pressures and the corresponding airfoil profiles
in a flow. Surface pressure distributions generated by
a panel code are used to train a neural network, which
is then used to predict airfoil profiles for a given sur-
face pressure distribution (the “inverse” problem), or
to predict the pressure distribution for a given airfoil
profile (the “forward” problem). The generalization ca-
pability of ANNs in the presence of noisy data is also
studied. Results indicate that optimally trained ar-
tificial neural networks may accurately predict airfoil
profiles and pressure distributions.

Introduction

In order to develop aircraft components and config-
urations which possess favorable aerodynamic perfor-
mance characteristics efficient, automated design pro-
cedures are needed. At present, there are two main ap-
proaches to the design of aircraft configurations. The
first is direct optimization, where an aerodynamic ob-
ject function, such as the pressure distribution, is opti-
mized computationally by gradually varying the design
parameters, such as the surface geometry. The second
is the so-called inverse design methods. Here, the pres-
sure distribution at a given flow condition is specified,

and the surface geometry is then determined to satisfy

the pressure distribution.

In direct optimization methods, the flow solutions for
various combinations of design parameters are deter-
mined by optimizing an aerodynamic object function,
such as the pressure distribution. The computational
effort can therefore be excessive. In order to keep
the computational effort required within reasonable
bounds, it is necessary to put limitations on the num-
ber of design variables. Details on the use of numerical
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optimization in aerodynamic design can be found in
works by Hicks and other authors.(1-3)

In inverse design methods, the aim is to generate a
geometry which corresponds to a prescribed flowfield
information. Typically, a target pressure distribution
is prescribed, and the body geometry which generates
this pressure distribution is determined. There are
many inverse techniques in use, for example, hodo-
graph methods for two-dimensional flows,(*?) and
other two-dimensional formulations using panel meth-
0ds.®9 In some inverse methods, the design of the
body is carried out in an intermediate transformed
plane.(1%11) The above methodologies have been ex-
tended to the three dimensional case.(1215) Most ana-
lytical inverse design schemes are dependent on several
external parameters that may reflect, for example, the
various simplifying assumptions (such as linearization)
made during the analysis phase. Further, it has been
noted that if the inverse problem is ill-posed, small dif-
ferences in the specified pressure distribution may lead
to large differences in geometry.(1617) Certain condi-
tions, such as leading-edge stagnation conditions, may
also have to be specified. Also, in certain cases, there
may be no control over certain design parameters such
as closure at the trailing edge of an airfoil profile.

The main objective of this work is to show that artifi-
cial neural networks can be trained to design airfoil pro-
files as well as to predict surface pressure distributions.
Lately, neural networks have been used to predict aero-
dynamic forces and moments on an airfoil. 18:!%) Since
ANNS are trained to emulate underlying nonlinear pro-
cesses, the problem of making simplifying assumptions
or approximations hardly ever needs to be considered.
ANNSs have been shown to exhibit extremely robust be-
havior as far as generalization to new configurations is
concerned. ANNs are also able to perform adequately
even in the presence of noise in the data. These desir-
able characteristics of artificial neural networks formed
part of the motivation for the exploration of ANNs as
an inverse design tool. In the next section, we give a
brief description of ANNs.
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Artificial Neural Networks

Artificial Neural Networks are computing systems
based on a “learning” paradigm. They are also consid-
ered to be highly simplified models of the networks of
real neurons in biological systems. An ANN consists of
many individual “neurons,” each of which processes an
input information from other neurons and feeds its out-
put into other neurons. A simple mathematical model
for neural networks is given as:

ni = g(Q)  wiyn; — i)
i
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Figure 1. Schematic Diagram for a Simple Neuron
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A schematic diagram for the model is shown in Fig-
ure 1. Here, n; is called the state or activation of the
neuron ¢ and is continuous valued. g(.) is a general non-
linear function called variously the activation-function,
gain function, transfer function or squashing function.
The weight w;; represents the strength of the connec-
tion or synapse between neurons i and j. pu; is the
threshold value for neuron ¢, and is a cell-specific pa-
rameter. The general architecture of a two layer neural
network with feed-forward connections and one hidden
layer is shown in Figure 2. The input layer is not in-
cluded in the layer count because its nodes do not cor-
respond to neural elements. The weighted sum of the
inputs must reach or exceed the threshold value for the
neuron to fire or transmit.

A major issue in neural networks is the choice of ap-
propriate connection weights so that the network can
implement a specific task. This is known as learn-
ing. Many learning algorithms have been developed
by which we can teach or train a network to perform
a desired computation by iterative adjustment of w;;.
One drawback associated with neural networks is that
it is normally very difficult to interpret the values of
the connecting weights w;; in terms of the task being
implemented.

Neural networks offer a very powerful and general
framework for representing nonlinear mappings from
several input variables to several output variables. The
form of the mapping is governed by a number of ad-
justable parameters (the weights w;; described previ-
ously). The process of determining the values for these
parameters on the basis of the available data is called
learning or training, and the corresponding data set

of examples is generally referred to as a training set.
Since the central goal is to produce a system which
makes good predictions for new data (referred to as
a system which exhibits good generalization), we have
to generate a second independent data set called a test
set, which is produced in the same way as the train-
ing set, but with new values for, in our case, the angle
of attack and the airfoil geometry. This is because of
our basic assumption that the data on which we wish
to use the trained neural network is produced by the
same underlying mechanism as the training data.

Training generally involves minimization of an appro-
priate error function (e.g., the root mean square (RMS)
error) defined with respect to the training set. The aim
of training is to determine the parameters of the neural
network that has the best performance on new data.
A simple approach to evaluate the performance of the
network is to compare the error function on the inde-
pendent test set. Since this procedure can itself lead
to some over-fitting to the test set, the performance
of the network should be confirmed by measuring its
performance on a third independent set of data called
a validation set.

Input Layer

Figure 2. General architecture for a 2-layer Neural
Network

For a successful implementation of artificial neural net-
works with reference to any particular problem, a num-
ber of issues have to be resolved; particularly important
among these are:

o choice of learning algorithm;

o choice of network architecture;

¢ will the network generalize satisfactorily?

In general, we need to compute a set of weights w;; that
produce the desired outputs from each input pattern.
Learning algorithms such as the back-propagation al-

. gorithm for feed-forward multilayer networks(2®) help

us to find such a set of weights by successive improve-
ment from an arbitrary starting point. Thus, the choice
of the learning algorithm depends mainly on the choice
of the neural network for the particular task. Once the
type of network and the learning algorithm is decided
upon, we need to consider the network architecture.
This is an important issue, because large networks tend
to have poor generalization ability (the ability to gen-
eralize from examples on which it has been trained to
examples previously unseen), but a network must be
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large enough to have the expressive power necessary
to accommodate the problem. Also, choice of appro-
priate representation of the input and output patterns
can simplify the problem considerably.

The Inverse Design Procedure

An airfoil profile can be described by a set of z- and y-
coordinates, as illustrated in figure 3. Given the airfoil
profile, a pressure distribution may then be computed
under various flow conditions set by the angle of at-
tack o, freestream Mach number M., and the Reynolds
number R,.

(LS ]
(waN )

Figure 3. Flow field and airfoil data

In this work, we will only consider subsonic flows over
NACA type airfoils at an incidence. Under normal
circumstances, data from wind-tunnel tests would be
used for training the network. In the absence of such
explicit unclassified databases, however, we have simu-
lated such data using a panel code, which computes the
potential flow over an airfoil. Panel codes(®?) assume
the flow to be inviscid and incompressible, and they
can adequately model subsonic flows at low angles of
attack.

The ANN model used

In this study, a feed-forward neural network model was
used to implement an inverse design procedure for air-
foil profiles. Multi layered feed-forward networks have
a set of input terminals (input layer) to feed the in-
put patterns into the network. After the input layer,
there can be one or more intermediate layers of units
called hidden layers, followed by the final output layer
where the computed results are obtained. Every unit
feeds only the units in the next layer (feed-forward),
and there are no back connections from the units in a
layer to a previous layer. Figure 2 is an example of a
2-layer feed-forward neural network.

Once the type of network is chosen for a particular
problem, we need to choose appropriate training
regimes as well as an appropriate data representation
and network architecture for the network to perform
optimally.(20)

The ANN architecture used

Developing an ANN architecture appropriate to the
task under consideration is a major concern, as each
application requires its own architecture. With a
good choice of network architecture, the trained net-
work generates the right output for an unknown input.
There are algorithms such as Fahlman and Lebiere’s
Cascade Correlation algorithm®? which are capable
of evolving a suitable architecture as part of the train-
ing procedure.

Angle of Attack,
él Dl
P
1
X
c Y2

7.

K

yA

XN .
Hidden
Output
{CPN Layer Lay%r
Input
Layer

Figure 4. The Neural-Network Model trained to pre-
dict surface y-coordinates as a function of the airfoil
chordwise pressure distribution and angle of attack o

The universal function approximation property of neu-
ral networks is employed to determine a nonlinear map-
ping that defines the relationship between the surface
geometry, the external flow conditions and the sur-
face pressure distribution. As shown in figure 4, the
physical z— coordinates of the airfoils, together with
the orientation defined by the angle of attack o and
the corresponding surface chordwise pressure distribu-
tion are used as inputs into a neural network, which
is then trained to predict the corresponding surface y-
coordinates.

During training, each input pattern is associated with
the corresponding output pattern. Thus the network
learns the actual functionality between the input stim-
uli and the output response, i.e., it determines the

" relationship between the input and output patterns,

in this case, the relationship between the pressure co-
efficients and the corresponding target upper-surface
y-locations for each section.

Results and Discussion

In our investigation of neural network models for in-
verse design, we found that satisfactory results were ob-
tained by using a feedforward, single hidden layer neu-
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Figure 5. Comparison of predicted and theoretical airfoil profiles at zero degree angle of attack

’

ral network with a sigmoidal hidden activation func-
* tions, and linear outputs. Problems regarding the com-
plexity of the model (determined in our case by the
number of hidden units) using singular value decom-
position of the hidden layer activations have been dis-
cussed elsewhere.(22:23) In our case, it was found that
ten hidden nodes could adequately capture the nonlin-
ear relationship between the airfoil profile, the external
flowfield condition and the pressure distribution. The
ANN was trained using a modification of the backprop
algorithm®® called “resilient propagation”.?¥) The
use of an ANN, and the associated training algorithm,
is typical in this type of prediction problem, and the
details can be found in standard textbooks.(29) We will
not describe these here.

As mentioned previously, training data are produced
using a panel code, which computes the pressure co-
efficient C, at desired locations on the airfoil surface.
Thus, we have a database comprised of 26 upper- and
lower-surface z— and y— coordinates, together with

the simulated pressure distributions from 158 airfoil ~

sections at angles of attack ranging from 0° to 13° de-
grees. There were 1422 patterns in total. The main
goal is to determine the airfoil profile for a given pres-
sure distribution under certain flow conditions, in this
case, the angle of attack a. This is the “inverse” prob-
lem.

Figure 4 illustrates how the network is trained to learn
the functionality between the surface geometry and
flowfield information, and the corresponding surface

pressure distribution. The network was trained to min-
imum error (using 1000 training patterns) on a test set
(comprising 400 patterns) which was not used in the
training process.

We show the results of applying the trained neural net-
work on a separate validation set constructed from the
remaining patterns. Eight such cases are shown in fig-
ure 5. Figure 6 shows how the training and testing
root-mean-square (RMS) errors decrease with the num-
ber of minimization steps. S

It is noticed that the present scheme is able to predict
the airfoil profile as a function of the surface chordwise
pressure distribution and the angle of attack « with a
high degree of accuracy. A measure of the accuracy of
the results obtained can be inferred from an examina-
tion of the maximum error, normalized as a percentage
of the airfoil thickness, of the difference between the
actual and the predicted profiles, defined as

|yi(actual) — y;(predicted)|
airfoil thickness ratio

* 100%,
i=1,...,N

where y;(actual) is the actual y-coordinate of the sec-
tion at location %, y;(predicted) is the predicted y-
coordinate, and N is the number of control points in
the airfoil profile, in our case, 26. This is displayed in
table 1 for the eight cases shown in figure 5.

Next, we solved the “forward” analysis problem,
namely, prediction of the pressure distribution given
a particular surface geometry as input. As before,
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Figure 6. Convergence criteria for trained neural net-
work. Note how the training and testing errors de-
crease with the number of minimization steps. The
network was trained for 10000 epochs.

Airfoil Maximum error (%)
NACAO0012 0.407
NACA1410 1.087
NACA2410 0.8978
NACA2415 0.9476
NACA2421 0.5368
NACA4415 0.8808
NACA4510 4.836
NACA6415 2.047

Table 1. Maximum error normalized as a percentage
of airfoil thickness for the validation cases shown in
figure 5

we used the same 1000 patterns for training, and the
same 400 patterns for testing. The remaining patterns
were used for validation purposes. In this case, the
netwerk architecture is modified as shown in figure 7.
Each input vector consists of the z- and y-coordinates
of twenty-six locations on the airfoil surface, together
with the angle of attack o, while each output vector
consisted of the target chordwise pressure coefficients
at the corresponding locations. The results are shown
in figure 8. It is shown that reasonable accuracy can
be achieved for all the validation cases.

In real-world situations, the data collection procedure
involves implementing a series of wind-tunnel runs over
various airfoils under different external flow conditions.
The pressure distribution over the airfoil surface is
measured by placing physical sensors in the form of
probes, or advanced laser-Doppler anemometry tech-
niques. The physical sensors then transduce the mea-
sured physical value to another quantity (in this case,
the pressure coefficients at different locations on the
airfoil), and digitize the results. A database is then

Angle of Attack,

Airfoil Coordinates

Figure 7. The Neural-Netwok Model trained to pre-
dict the pressure distribution as a function of the airfoil
coordinates and the angle of attack o

built from these measurements. In the general case, our
model has to perform an adequate inference of the air-
foil’s interaction with the flow field, and to do so within
a changing operational context, even in the presence of
noise related to the measured data.

An impressive feature of ANNs is that, since the net-
work learns the underlying generator of the data, they
can generalize even in the presence of noise, if care is
taken to prevent overfitting. Therefore, it is possible to
use experimentally measured pressure distributions as
inputs to obtain very accurate solutions. In real-world
data gathered from wind tunnel tests by sensors placed
on the surface of the airfoils, instrumentation calibra-
tion and transduction can introduce a potential source
of noise. This is simulated by adding a maximum of
+20% random noise to the values of the pressure dis-
tributions computed by the panel method. The goal is
to determine whether the model developed can gener-
alize in the presence of noise to the closest underlying
distribution in an optimal sense.

Results, using the same training and testing criteria as
before, are shown for the same eight validation cases
in figure 9. Note the excellent generalization capability
of the model.

. This very important result indicates that it may be

possible to utilize noisy data obtained from wind-
tunne] experiments for design purposes, using pattern-
recognition based algorithms such as artificial neural
networks. In order to demonstrate the capability of
neural networks as an inverse design tool under noisy
data, the same simulated noisy data described previ-
ously is employed, in this case for the inverse design
problem. Results are shown in figure 10. A compari-
son with figure 5 shows very little difference between
the actual and predicted airfoil coordinate values, even




Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

2.00

NACAOQ012, o=4"
(&) 0.50

~1.00 # v r - —
11.00

o NACA2410, o=13°
(&) 5.00

—1.00 ~+ 5 ? = S
2.00

NACA2421, =3
(@) 0.50

—1.00 T -
11.00

NACA4510, a=13°

Panel Method ‘I
T}

7.0 S L © Neural Net Predictio

3.0 4 NACA1410, a=10"
1.0 Daeeers
2.0 4
4 NACA2415, a=5"
0.5 A
—-1.0 v v "

—~1.0 S

7.0 +

NACAG641S5, a=13°

~0.0 ' 05 ' 1.0

Figure 8. Theoretical and predicted pressure distributions using the present method
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neural network for various flow coriditions and airfoil contours using simulated noisy data
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Figure 10. Actual and predicted sections using simulated noisy data

when noisy data is used.

Conclusions

In this paper, we have introduced an inverse design
methodology using artificial neural networks which
may be used for the design of airfoil profiles at sub-
sonic flows. We used the data produced by a panel
code to train the artificial neural network. The results
indicate that the present technique can be used as a
feasible inverse design tool, as well as an analysis tool.

Since the trained network can be used for inverse de-
sign in near real time, a potential application of this
scheme is in the area of active or dynamic design under
time-varying flow conditions. For instance, an ANN

can be trained to predict the required airfoil geometry

as a function of the flight conditions, so that a real-
time adaption to changing flow conditions may be im-
posed. This can be particularly useful in the transonic
regime, where the airfoil profiles can be dynamically
deformed using smart materials to minimize or even
preempt losses due to shock-boundary layer interac-
tion. Further, the technique can also be extended to
dynamically reduce aerodynamic ipterference between
different aircraft components in time-varying flow con-
ditions.
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