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Abstract

The mixed structured singular value p allows
the designer to determine the robustness of a
control system. The exact calculation of this
measure is not possible. Therefore, we confine
ourselves to the determination of lower and
upper bounds. As lower bound calculation re-
mains still a main interest of research, espe-
, cially in the case of real parameter uncertain-
ties, a new algorithm for its calculation will be
presented.
The new method is based on modal control
ideas. The first order variation of the closed
loop eigenvalues is used to move the poles
towards the imaginary axis in order to deter-
mine the smallest destabilizing perturbation A.
Frequency gridding is not necessary anymore,
we will speak of frequency “sweeping”. For that
reason we can not miss a thin peak in the u—
plot.
‘We apply the new procedure to the Research
Civil Aircraft Model (RCAM) that served as
the basis for a robust flight control benchmark
defined by GARTEUR.
‘We compare the new lower bound of u with the
classical results. The calculation time is con-
siderably reduced whilst the worst case is al-
ways detected. Furthermore, the perturbation
matrix A is not distorted anymore by adding
artificial complex perturbations.

1. Introduction

In industry, the validation of command laws is
based on a large number of simulations whilst all the
uncertain parameters entering the definition of the
considered system are varied. The number of tests is
an exponential function of the number of uncertain
parameters. In aeronautic and space systems for ex-
ample, the set of uncertain parameters is so large that
the number of considered parameter configurations has

N Copyright © 1998 by ICAS and AIAA. All rights reserved

to be limited on beforehand, introducing the risk that
potential stability problems remain undetected. Until
now and with a good physical comprehension, it was
possible to minimize, even to avoid such a risk. The
actual systems become, for economical reasons, lighter
and lighter, therefore still more flexible. The flexibil-
ity complicates the robustness analysis considerably.
Hence, nowadays more sophisticated validation tools
than simulations are necessary.

The structured singular value SSV u allows the
designer to determine the robustness of a control sys-
tem.(!) For that purpose describe the system in the
so—called standard form, a Linear Fractional Transfor-
mation LFT description of the model, where all uncer-
tainties are eliminated in the model matrix M(s) and
stacked in one matrix A(s), the perturbation matrix
(see Fig. 1). The uncertainties can be of pure complex,
mixed or pure real character, i.e. they describe effects
of neglecting dynamics (normally full complex blocks)
or respectively uncertain model parameters (real re-
peated scalars).

The exact calculation of this measure is proved
to be NP-hard, i.e. the computation time for yu is
an exponential function on the problem size, so it is
limited to simple problems.(*#) Therefore, we confine
ourselves to the determination of lower and upper.

bounds.

The case of pure complex perturbations has already
been treated in the late eighties. Real repeated un-
certainties have been replaced by repeated complex
scalars. No problems arise for lower and upper bounds,
especially if the number of full complex blocks is high
enough.(5:6)

Then the case of mixed perturbations has been
handled with. A lot of work has been spent to the upper

21st ICAS Congress
13-18 September 1 998
Melbourne, Australia




Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

A

A(s)

Fig. 1. The standard form

bound computation.("1% A good upper bound seems
to be found by frequency gridding.

On the other hand the lower bound remains still
a main interest of research, especially in the pure real
case. The convergence of the so—called standard power
algorithm SPA is not sufficient: limit cycles arise during
the run. A lot of improvements have been proposed
but either the problem is not solved or the calculation
time is augmented considerably.(}1-14) Some different
approaches are limited to certain groups of pertur-
bations.(!5:16) Another approach is to determine the
worst case of a problem where some complex scalars are
added artificially to improve SPA convergence charac-
teristics. Then omit the complex part of this perturba-
tion matrix and reshift the destabilizing eigenvalue on
the imaginary axis by minimizing the 7(A)-norm.(?)
A problem, common to all cited approaches is fre-
quency gridding. A thin ‘peak’ in the u—plot, especially
provoked by a flexible mode, can be missed if the
number of sample points is not sufficiently high and/or
the calculation option is not sufficiently accurate which
ends immediately in increasing computation time or
workspace problems.

Thus, a completely new algorithm for the calcula-
tion of the lower bound of u based on first order vari-
ations of eigenvalues has been proposed recently.(18)
This algorithm is developed to handle with thin u—

peaks of flexible structures by “frequency sweeping”, -

i.e. without use of frequency gridding which is demon-
strated on a flexible satellite system.(19)

It will shortly be presented in this article and then
validated upon the rigid Research Civil Aircraft Model
(RCAM), a robust flight control benchmark problem
proposed by GARTEUR *.(9) The work reveals that
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— even if the system is robust and thus the p—plot
is more or less constant over all frequencies and does
not show significant peaks — the algorithm detects
the maximum value of u, the worst case. This is a first
step towards future robust flight control with flexible
aircraft.

2. Definitions

Let us consider a quadruple in state space form
(4, B,C, D) and in transfer matrix form

M(s)=C(sI - A)"'B+D

A class of uncertainties A (which act as a feedback on
the system, see Fig. 1) has the following structure:

A= diag(A4, ..., A,) (1)

in which A; might be a diagonal matrix of the form
A; = 6;1,, with 6; € R (real repeated scalar block)
or §; € € (complex repeated scalar block) or a matrix
in €***™ (full complex block). In the part relative to
the lower bound A; might also be a matrix in IR, ™*™
(full real block). Such a matrix A will be called an
“admissible perturbation”.

The real and imaginary part of a complex number
are denoted R(.) and $(.), the maximum singular value
&(.). A matrix (.)* is the complex conjugate transpose

of (.).
First let us recall a well known result:

Lemma 2.1. If A is such that the interconnection
(M, A) remains well-posed (i.e. for all admissible A,
det(I — DA) # 0) and if so does not belong to the
spectrum of A:

det (I — M(s0)A) = 0 )
& so € spectrum (A + BA (I - DAY C)  (3)

In order to compute the SSV at a complex point )\,
we address the problem of assigning ) in the closed
loop spectrum with a “feedback” A (belonging to the
set of admissible perturbations) of minimum “sigma-
max norm”. Usually, the SSV is defined via Equation
(2),%%?Y) but in view of Lemma 2.1, the following
definition via Equation (3) will be considered.

Definition 2.2. The SSV at point X is defined as pu =
1/5(A) where A is an admissible perturbation such
that

(1) X belongs to the closed-loop spectrum of (4, B, C,
D) with feedback A
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(2) o(A) is minimum.

3. The algorithm

3.1 Generalities

A new algorithm which computes a lower bound of
the peaks of the y~curve is proposed. This algorithm is
efficient for mixed or pure real uncertainties. From the
fact that frequency gridding is not used, the proposed
algorithm is very fast. This is quite useful in a design
cycle in which it is necessary to detect worst cases.(22)

The idea beyond this technique consists of shift-
ing the eigenvalues towards the imaginary axis with
a minimum perturbation. The proposed algorithm is
divided into two steps. The first step is used to reach
the limit of stability with a perturbation of minimum
Frobenius norm. An adaptation of the “pole migra-
tion” is used:(?3)

Lemma 3.1. The first order approximation d\ of the
motion of an eigenvalue of the matrix Ay induced by a
gain variation dA of Ag is

d = (uB + tD)dA(Cv + Dw) (4)

where v is the right eigenvector of Ay, u is the left
eigenvector of Ay corresponding to the eigenvalue A
and w = Ag(I — DAO)—ICU, t= UBA()(I - DAo)_l.

The second step consists of minimizing the “sigma-max
norm” of the perturbation obtained after the first step
while remaining at the limit of stability.

3.2 Determination of a destabilizing pertur-

bation matrix Ar of minimum Frobenius
norm

The proposed algorithm is sketched first. Several
comments are given afterwards in order to discuss
some implementation adaptations that improve the
efficiency.

Principle of the algorithm. Let X denote one of
the eigenvalues of A+ BA¢(I—DAg)~1C. It is intended
to find dA (a variation of Ag) that shifts (first order
approximation) A to a vertical line which is distant
of a small amount denoted R;. A motion from \ to
the vertical line defined by R; is performed as follows.
Equation (4) is a linear constraint on dA

R((uB + tD)dA(Cv + Dw)) = R; (5)

dA satisfying (5) will be computed such that the
Frobenius norm

Ji = [|Ag + dA||% (6)

is minimum. This is a problem of quadratic optimiza-
tion under linear constraints. Such a problem will be
solved at each iteration of the proposed algorithm. In
order to avoid initialization problems due to the fact
that, when the criterion J; is minimum for large values
of dA, the first order approximation of Lemma 3.1 is
no longer valid, we shall minimize a combination of
criteria J; and Jp, where Jy is defined by

Jo = |ldAll% ()

At the beginning of the algorithm, J, is considered,
then a combination of Jy and J; that becomes equal
to Ji (see (9)). Usually, N = 20 is enough.

Algorithm 1.

Step 1 - Initialization. Choose the initial open-loop
eigenvalues that are to be moved towards the imagi-
nary axis. Choose also the expected number of steps
(say N) that will be used in order to shift each initial
eigenvalue to the target. For each initial eigenvalue ),
perform the following steps. Set i = —1 and Ay = 0.

Step 2 - Compute u, v, w, ¢t and solve (5), for dA
having the admissible structure, for a variation of R()\)
given by ®; = —R(A)/(N —1) i.e.

R((uB + tD)dA(Cv + Dw)) = R; (8)

such that

(N =i~ DIdANE + (i + DllAo +dAE o,
N

is minimum.

Step 3 - Seti =min(i+1,N—1),Ag = Ag+dA. After
Ag is updated, select the new closed loop eigenvalue
that is the closest to A + R; that will become the new
A. If X is close enough to the imaginary axis, stop,
otherwise go to step 2.

Comments relative to Algorithm 1. In order to
reduce the computing time it is useful to apply the
algorithm only to a subset of the poles of M(s). The
use of the bandwidth knowledge of the system behavior
can help. It is also possible to apply a controllability
measure.

Equation (8) is a linear constraint relative to the
entries of dA and (9) is a quadratic criterion. An
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intermediate step which consists of writing the entries
of Ag and dA as real vectors & and d¢ (in which
uncertainties are not repeated) is necessary. Equation
(8) can be written

Adé=b (10)

and Jo and J; in (9) become respectively
Jo=d¢TH, de
Jy =d¢THy d + 2¢; dE (11)

Limitations come from the fact that just first order
approximations are applied and that Equation (4) is
only valid for non repeated eigenvalues.(19)

3.3 Determination of a destabilizing pertur-

bation matrix A of minimum &(A) norm

After having used the algorithm of the previous
section, we have at our disposal a matrix Ay which
assigns a pole ); on the imaginary axis. But the norm
that was minimized for obtaining this result is not
the right one. So, a second algorithm is proposed: the
assignment of R(A;) is preserved while the convergence
towards a matrix “A” with minimum sigma-max norm
is performed.

Principle of the proposed algorithm. Conside-
ring the singular value decomposition (s.v.d.) of Ay =
USV* and denoting V; the first column vector of V,
the maximum singular value of Ay is

7(0o) = /VrAs Aot

(12)

so we have to minimize (12). For that purpose a new
criterion

Jo = Vi (Ao + dA) (Ag + dAYWA (13)

is defined in which V; is relative to Ag. As it is expected
to consider small variations of Ay we shall have

Jy 2 (Ao + dA)

It is this approximation J; of the maximum singular
value that will be considered.

Algorithm 2.

Step 1 - Initialization. Perform Algorithm 1. Let Ag
denote the resulting admissible perturbation and ) the
eigenvalue which is approximatively on the imaginary
axis. Choose the number of iterations N. Set i = 0.

Step 2 - Compute u, v, w, t and solve, for dA having
the admissible structure,

R((uB + tD)dA(Cv + Dw)) = —R()\) (14)
such that
(N —i)]|A0 + dA|I%
N
+iVl* (Ao +dA)*(Ag +dAYW (15)

N

is minimum, in which V; is relative to the s.v.d. of Ao.

Step 3 - Set i = min(i+1, N~1), Ay = Ag+dA. After
Ao is updated, select the new closed loop eigenvalue
that is the closest to &(A) that will become the new A.
If the value of J> becomes stationary, stop, otherwise
go to step 2.

Comments relative to Algorithm 2. The linear
constraint in Equation (14) can be expressed like in
Equation (10) and the quadratic criteria J, of Equation
(15) obviously like J; in Equation (11).

The criterion in (15) is a combination of J, and J,.
At the first step, ¢ = 0, J; is dominant in the composite
criterion. When ¢ increases, the part of J, increases.
Note that J; is not minimized without considering a
small amount of J; because Jo, unlike Jq, is not a
definite quadratic form. Usually, N = 20 is enough.

If the algorithm is run as above, the optimization
will end when the two leading singular values of A
become equal. It is worth noting that Algorithm 2
tends to tune the Frobenius optimal perturbation by
reducing the leading singular values. Coalescence of
two or more leading singular values is therefore usual.
In order to optimize further after the two leading singu-
lar values are equal it suffices testing that some singular
values become equal and then to adding some rows to
the linear equation that corresponds to Equation (14).
A number of additional iterations depending on the
number of singular values which become equal has to
be performed. Globally, 80 iterations are enough for
most systems.(19)

4. Application to a civil transport aircraft

In the following we will consider the Research
Civil Aircraft Model RCAM which served as a robust
flight control benchmark problem in the GARTEUR }
framework. It is a twelve state model for longitudinal
and lateral motion. The challenge was to design flight
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controllers robust to variations in airspeed V4, mass m,
time delay 7 and position of the horizontal and vertical
center of gravity X., and Z., during cruising, capture
of glidepath and localizer beam and final approach. 12
controllers have been proposed. Performance, safety,
passenger comfort and control activity criteria have
been evaluated in an automated procedure. Robustness
has been assessed by tools from the standard MATLAB
p~toolbox.(20,21,24)

The RCAM is a rigid model, however this example
is not less interesting as the controlled aircraft should
be more or less robust and the u—plot should not show
significant peaks. The fact that an algorithm developed
for flexible structures with their pregnant thin peaks
does also work under such conditions is remarkable. Its
performance with flexible systems is demonstrated on
a flexible satellite.(19)

4.1 Modelling under standard form

For analysis in the u—framework the aircraft has
to be modeled in the so—called standard form M,—
Ap (Linear Fractional Transformation LFT), i.e. the
aircraft is given at a nominal configuration (if possible
the algebraic average of the parameter ranges) in
the transfer function M, and all (normally norm-
bounded) uncertainties are stocked outside the aircraft
model in a perturbation matrix A,. This work is
detailed in Part I and Part III of this article in the
same proceeding.(?1:24) At first, airspeed Vj is not
considered as uncertain parameter. It results

bmbiz 0 0
Ap=| 0 64ohs O
0 0 ol

With airspeed as uncertain parameter and after renam-
ing of current combinations of the uncertain parame-
ters m and V4 we get

Omizs O 0 0

AI _ 0 5:ccg -[29 0 0

=10 0 ugly 0
0 0 0 by, I

After adding the LFT description of the control sys-
tem’s delay time M,-A, and the actuator dynamics,
it suffices here to close the loop by the different con-
trollers K, see Fig. 2.

We do not have to add 5 artificial complex scalar
uncertainties as it was done in Part I to make the SPA
(for the lower bound of the u~toolbox) to converge.(2)
Hence, we do not disturb our results by that regulation.
Normally, a perturbed system is not yet on the limit of
stability if the artificial uncertainties are just omitted,

1

ref —

Fig. 2. Interconnection of the subsystems

so the perturbation matrix has to be adapted. Thus,
we save some computation time.

Finally, the structure of Fig. 1 is obtained with
{8 0
2= v 2]

or A, respectively.

4.2 Robustness analysis of one controller

In Fig. 3 the u—plot of controller HI-09 is depicted.
It is an H, controller with 26 states which served as
an example controller for all participating groups, so
that it was not optimized in sense of robustness. This
fact explains the peak at about 0.7rad/s of 7 = 0.91 in
the standard p~toolbox upper bound (continuous line).
The lower bound is given with u 4 = 0.83 by the SPA
(dashed line). The second strong peak at 0.3rad/s is
not detected by the SPA, neither the peak at 0.1rad/s.
On the other hand, the new algorithm computes 4
peaks of the lower bound (*) where the critical one is
4 = 0.88. In comparison with the corresponding upper
bound a gap of 3.3% results which is acceptable in
contrast to a gap of 8.7% using the SPA.

Robust stability: controller HI-09
1 T

* pure real critical lower bound of the new aigorithm
08

08}
oTr
sk pure real upper bound trom mu-toolbox
g 0.5

04F

03r

02}

01F

$1 pura real lower bound from mu-tookbox
Lean - L

=y

10 + 10'

on'wmw(ﬁd/!l

Fig. 3. Comparison between the classical pure real p —
plot and the proposed lower bound for controller
HI-09




Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

For further validation of the calculated lower bound
we confine ourselves to the result of the highest peak in
the y-plot. At first, the stability domain is plotted in
Fig. 4. The system is perturbed by a set of matrices A
where the parameters ¢ vary in between —1.5 and 1.5.
The configuration where the system remains stable is
plotted with a dot -, the unstable ones are represented
with a white background. Normally, we would get
a hyper-space of dimension 4 or 5 (if Vy is also
uncertain), for readability purposes we just present the
cut of the plane & and &. If our algorithm works well,
we should find configurations on the limit of the dotted
region.

After algorithm 1 we dispose of a destabilizing
matrix Ag,o, with minimum Frobenius norm. This is
expressed by the parameter set Ar,.op on the “smallest”
hyper—ball (in 2D a circle) around the nominal point
which can be inscribed in the dotted region. After
algorithm 2 we finally have the destabilizing matrix
A,.... with minimum o4, norm, in other words with
magnitude of y. That is the “smallest” hypercube (here
square) which can be inscribed. The movement of 70%
of point A highlights the importance of algorithm 2.

Stability surface depending on §‘ and §2

Fig. 4. Stability domain of the system with contrcller
HI-09

Another test, possibly more common, is a pole map
plotted during the iterations of algorithms 1 and 2. One
pole is shifted to the imaginary axis during algorithm
1 and remains there during algorithm 2. We are indeed
on the limit of stability.

Airspeed V4 is omitted in the analysis of Part I as
the LFT is too big for acceptable computation time.
The calculation of y (lower and upper bounds) takes
for example 18 h for controller HI-09 if airspeed is
considered as an uncertain parameter. Of course, no
lower bound is obtained. This is really unacceptable as
the lower bound gives the worst case configuration and
not the upper bound. The upper bound serves just for
validation purposes. On the other hand, the proposed
algorithm takes just 37 min which is still reasonable for

Flool ocus during ilerations 1o 3,

Imag Axls
T

05
Real Axis

Fig. 5. Root locus of the system perturbed by A

such a problem size. The peak is detected with 10%
precision(see Fig. 6). Hence, the proposed algorithm
still works well whilst other algorithms (for example
SPA or LMI based upper bounds) do already not work
anymore.

Robust stability: controller HI-08 (sirspeed is an additional parameter)
- :

12l * pare real critical lower bound of the new aigorithm

pure real upper bound from mu~toolbox

o8fF

mui-}

06

04r

02

pure real fower bound from mu-~toolbox

o 1

10 10

frequency {rad/s]

Fig. 6. Comparison between the classical pure real p —
plot and the proposed lower bound for controller
HI-09 with airspeed V4 as additional uncertain
parameter

4.3 Robustness analysis of all controllers

In Table 1 the u lower bounds of the critical peak
from the new algorithm are compared with those of the
SPA. Often, the SPA does even not offer a result. For

 validation of the computed lower bounds the standard

upper bound from the p—toolbox is determined. The
biggest gap is of 7%.

For controller MS~19 the lower bound is greater
than the upper bound which is due to a very thin
peak. During a first analysis of all controllers described
in Part I this peak was not detected at all, neither
with a gridding of 50 points. For the determination of
a good upper bound make a zoom around 15rad/s,
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New algorithm p—toolbox 2
C 1 «
ontroller Frequency lower bound lower bound upper bound Frequency
[rad/s] = — ] frad/s]

HI-09 0.69 0.88 0.83 0.91 0.72
MS-11 0.60 0.45 0.44 0.48 0.61
MM-12 7.99 0.33 0 0.35 7.83
CC-13 0.87 0.48 0 0.49 0.86
LY-14 0.75 0.54 0.53 0.56 0.77
FL-15 5.82 0.41 1} 0.43 5.86
MO-16 6.37 0.33 0 0.34 6.58
EA-18 6.96 0.77 0 0.81 6.97
MS-19 15.06 1.31 0 1.25 14.85
HI-21 1.28 1.49 1.35 1.50 1.29
EA-22 0.51 0.37 0.37 0.38 0.51
MF-25 0.65 0.63 0.62 0.64 0.64

1 Type: FL = Fuzzy Logic, MM = Modal Multi-Model Synthesis, MO = Multi-Model Multi-Objective Optimization,

EA = Eigenstructure Assignment, CC = Classical Control, MS = u~Synthesis, MF = Model Following, HI = H.,
LY = Lyapunov; Number: corresponds to GARTEUR report number
? gridding with 100 points is imperative for accuracy

Table 1. Comparison between the worst—cases computed by the classical approach and by
the proposed algorithm

i.e. define a small frequency interval around 15rad/s
and then compute for example 100 points. The upper
bound peak increases.

Concerning computation time, generally the new
algorithm takes just a third of the corresponding time
with the standard p~tool of MATLAB. Hence, the new
algorithm is also useful for an initial analysis to detect
critical configurations where to apply deeper—going
analysis.

In Fig. 7 — Fig. 18 the p-plots corresponding
to all proposed controllers are depicted in the same
manner as in Fig. 3. Generally speaking, all critical
peaks are detected by the new algorithm while the
SPA misses several peaks. What is more, the new
algorithm detects almost all smaller peaks as well. Just
with controller EA-22 it misses peaks. The problem is
that the controller is robust, so that the variations of
eigenvalues of the system should be very small and
the first order approximations are not valid anymore
(especially at the beginning of algorithm 1).

With controller MO-16 it detects a peak at almost
0.7rad/s, but the magnitude of the peak is not correct.
Remark the fact that the SPA has converged as well
to a lower bound comparable to our one. So, the
question arises if it is not the upper bound which is
too conservative. A zoom in the frequency interval of
0.3rad/s and 1rad/s with 100 points and application
of the more precise calculation option have reduced the
upper bound peak from 0.32 to 0.26. Hence, the gap is
in fact not too bad.

5. Conclusions

A new powerful algorithm has been presented and
applied to a certain number of robust flight controllers.
The results are very promising. For validation purposes
of the lower bound we need an upper bound. To draw
advantage from the fast lower bound computation and
to get rid of the time consuming and not very reliable
calculation of the upper bound by frequency gridding
with the standard p-toolbox, we are actually working
on a LMI based upper bound based on the use of
piecewise constant scalings.(1%)

Having both tools by hand, we can"go one step

further and attack robust controller synthesis problems
by self-scheduled gains.
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Robust stabliity: controller HI—09

* pure real critical lower bound of the new algorithm
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Fig. 7. Hoo-synthesis (HI-09)
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Fig. 9. Modal-multimodel approach (MM-12)
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Fig. 11. Multi-objective optimization (MO-16)
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Robust stabiiity: controlter MS-11

frequency (Hz)

Fig. 8. p-synthesis (MS-11)

Robust stabikty: controller LY-14
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Fig. 10. Quadratic stability (LY-14)

Robust stability: controller EA-18

frequency (Hz]

Fig. 12. Eigenstructure assignment (EA-18)
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Robust stabitity: controller MS—19

Robust stability: controller Hi-21
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Fig. 13. p-synthesis (MS-19) Fig. 14. Ho-synthesis (HI-21)
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Fig. 15. Eigenstructure assignment (EA-22) Fig. 16. Classical control (CC-13)
Robust stability: controller FL~15 Robust stabifity: controller MF-25
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Fig. 17. Fuzzy control (“linearized”) (FL-15) Fig. 18. Model of reference (MF-25)
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