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Abstract

This paper presents a generalization to multi-
input of a technique used for designing control
laws of SISO flexible structures. The first ob-
Jjective is to shift certain modes to the desired
direction, generally towards the left in the com-
plex plan, by means of a dynamic controller and
a loop gain variation.

The technique is based on the first order devel-
opment of the variation of the system’s eigen-
values. It is used for the stabilization of high
frequency modes of a flexible structure which
would have been destabilized during a previous
loop (stabilizing a rigid body structure).

The method of synthesis can be seen as a gener-
alization to the MIMO case of phase control. Its
multi-model feature provides high robustness
and the solutions remain very simple. It con-
sists of minimizing a quadratic criterion under
linear constraints. The phase control can be
combined with the gain control by assigning no
motion to some eigenvalues or by minimizing a
relevant criterion.

‘We apply this procedure to the flexible aircraft.

1. Introduction

The evolution in the aeronautical industry leads to
high capacity aircraft development. The optimization
of the design of these large aircraft, which includes
high aspect ratio and new materials like composites,
makes them become more flexible. This evolution in-
creases the interaction between aeroelastic dynamics
and control laws, known as aeroservoelasticity. Classi-
cal synthesis techniques, like eigenstructure assignment
with output feedback, may be unsuitable for directly
computing flight control laws because of the difficulty
of controlling both rigid and flexible modes.() Even if
several approaches based on eigenstructure assignment
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for dealing with flexibility have already been proposed
in literature,(>) the philosophy used therein is very
different from ours.
The technique presented in this paper is based on the
first order development of the variation of the system’s
eigenvalues, A\ = uAAv. Applying this expression to
some of the augmented system’s eigenvalues (controller
and system)(see Figure 1) makes it feasible to express
these values according to the variation of the loop
gain p and the controller’s transfer matrix to the given
frequency G.{);).
This article is divided into two parts :
o The first part will present the technique.
e The second part, dealing with the problem of
flexible aircraft, will demonstrate the multi-model
aspect of this method.

2. Problem statement and

main result

2.1 Problem statement

We shall consider the following linear system with
n states, m inputs, p outputs:

= Az + Bu

y=Cz (1)

where y is the vector of measurements, 4 € R™*",
B € R™™, C € R?*". This system may already be
in closed loop. For example, if we consider a flexible
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structure, a controller of the rigid body may be in-
cluded in (1).

It is well known that variations of the matrix A,
say A A, induces variation of the eigenvalue A given at
first order by

Al =ulAAy (2)

where v and u are right and left eigenvectors of A
relative to the eigenvalue .

Proof.(®)

Let define

¢ = Acze + Boue (3)
Yo = Ceze + Deug

Ac € R™ ™, B, € R™*? C, € R™*™ and
D, € R™*? (n, will result from a minimal realization
of the transfer matrix in (5)) Systems (1) and (3) are
connected as follows

U=Yc

Ue = pY
in which p is a scalar gain to be tuned between zero to
some positive value.

In this closed loop state space form, A, B,, C, and
D, are the unknowns that must be chosen in such a way
that, when p is tuned, the motion of some eigenvalues
of A is as desired (see Figure 1).

+ y

T —

(Ac, Bc, Ce, Dc) pl

Fig. 1. Generalized phase control scheme, p is tuned
from zero to some positive value.

2.2 Main result

Theorem 2.1. The motion of the eigenvalue A of A
when p is tuned in (1) is given at the first order by

Al = p uBG.(\)Cv (4)

where G.(s) is defined by
Ge(s) = Co(sI — A) B, + D, (5)

Proof.(©)

3. Constraints and criterion

The transfer matrix of the controller is considered
under the following form :

Ge(s) =
boi1 + ...+ bg11s? b01p +...+ bqlpsq
ao11 + ...+ ag1189 Go1p + ... + aq1p87
bomi + ...+ qulsq bOmp +...+ qupsq
Gom1 + .-+ agm18?  Qomp + ... + Ggmps?

In order to obtain linear inequality constraints, the
denominator coefficients are chosen a priori.(8) This
assumption is not very restrictive because if we take
into account roll-off requirements and the bandwidth in
which control effect is expected there does not remain
so much freedom. The free design parameters are the
numerator coefficients denoted b;;y.

Constraints to reassign the direction of certain
modes

We use result (4). ® and § denote respectively
the real and imaginary part. Let A; be the matrix
of parameters that characterizes the model considered
for controlling the motion of A;, u; and v; are left and
right eigenvectors of the matrix A, corresponding to
the eigenvalue A;. From Theorem 2.1, the inequalities
that are to be solved for G.()\;) are as follows.

¢ To move \; of Model (i) to the left:
R(uiBa;Gc(A;) Ca,v;) < 0r (6)

¢ To control the vertical motion of A\;
611 < S(uiBa; Ge(Xi) Ca,vi) <12 (7)

¢ For variations bounded inside a sector.

Sr1R(uiBa, Ge(N) Cavi) <
C‘Y\(uiBAi GC()‘i) CAiUi) < (8)
dr2R(uiBa; Ge(Xi) Ca,vi)

Usually, it is necessary to combine the first inequal-
ity with equations of the second or the third kind, for

. example 651 = 872 = 0:

o It is also possible to fix simultaneously the real
and imaginary motion

uiBa; Ge(Xi) Cavi = 0r + jor 9)

Constraints for controller structure.

The structuring of the dynamic controller allows for
the fixing of different dynamics and roll-off on each of
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the inputs and outputs. Several kinds of constraints
that are often encountered,(”) for example

e entries set to zero.

¢ scalar entries. In this case inequality constraints
relative to the sign or to the magnitude might be
of interest.

o degree of the numerator.

e entry proportional to some filter.

Quadratic criteria.

To define efficient design procedure it is necessary
to minimize a criterion. Here we shall only consider
criteria of the form

J = trace (Ge(jw)Ge(iw)*)  (10)
!

This criterion is quadratic in the unknowns. The
most natural criterion concerns the static gain of the
transfer matrix G.(s). Similar criteria can be consid-
ered, for example to impose roll off at a frequency wy.

Resolution.

Finally, the problem to solve turns out to be a prob-
lem of quadratic optimization under linear constraints.

4. Application to a large

flexible aircraft

In this example, we consider the lateral dynamics
of a large flexible aircraft. The model includes the
standard rigid-body states {angle of side slip, roll
rate, yaw rate, roll angle), the actuators states, and
the states for modelling of aeroelastic modes. The
model’s order is seventy one. The inputs are the
aileron and rudder deflections. The four rigid-body
states are measured. We have to consider six models
corresponding to six cases of mass. In Figure 2, the
pole maps of the six considered models and in Figure
3 the corresponding step responses in open loop are
depicted.

4.1 Design procedure

Initialization

First we have to assign the eigenstructure of the
rigid body subsystem. In order to limit the effect of
the rigid body feedback to the flexible modes, we use
a filter (see Figure 4).
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Fig. 2. Pole maps for six models in open loop.

angle of side slip

5
time

Fig. 3. Step responses in open loop for six models.

The n-dimensional state space of the open loop
system will be denoted X and the n¢-dimensional filter
extension for feedback will be denoted X s. The right
eigenvectors of the system connected to the dynamic
feedback belonging to X @ X'; are denoted (v;,vy;).
The state space is extended (¥ — X @ Xy).
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Fig. 4. Output filter of “rigid body controller”.

Y

The design of the rigid body control loop take into
account the filter. If Dy = 0, the closed loop matrix is
as follow :

A BCy (11)
ByKC Ay + BfKDCy

If we apply the standard design procedure of eigen-
structure assignment when K is a constant matrix, we
obtain the following result :

Proposition 1. Consider A\; € € and [v;,vy;) € X & Xy,
which satisfies for some vector w; € €™:

,_ o
A-xI BC; 0110
0 Ar-XIB;||VF

The vector [v;, v¢;] is assigned by the static gain K
if and only if

K (C’Ui + DCf‘Ufi) = wW; (12)

The “rigid” control loop is computed which permits
us to assign the eigenstructure of all models. So,
for each model k, we have to solve equation (12).
In order to increase the robustness, we shall select
the eigenvectors to be assigned by using orthogonal
projection.(®) This projection is realized for each model
k.

Finally we have to solve :
(13)

K= [W.. W] [Vlvk]_l

With :

W= Ce Vi + Dkaka

For this application, the filter order is 2 for each
input. After closing the first loop, the rigid body states
are correctly assigned, for the six models, but this
controller, in spite of the filter, has a destabilizing effect
on some flexible modes (see Figure 5 ).

40 T ¥ D
X %
y X
20t X x
x X X X X
0 " L L X n ' i
-3 -2.5 -2 -15 -1 -0.5 o]
40 T T T T T < T
x :
X X x
20r- x x x 1
X Xoxix
o 1 J b &1 - 1 i
-3 -2.5 -2 -15 -1 -0.5 0
40 T T T T T T
X %X :
20 x x x X
X X X X
0 X .
-3 =25 -2 -15 -1 -0.5 0
40 ; %
a X
E x X
g,ZO x ¥
E x X X%
0 I S
-3 -25 -2 -1.5 -1 -0.5 0
40 T T
x % :
201 x X7 %
x ><§< x
0 X " x " 2 1 H
-3 -2.5 -2 -1.5 -1 -0.5 0
40 T T T T
%X :
X .
20r % M
X x x)k X x
0 2 i X 1 L L i
-3 -2.5 -2 ~15 -1 -05 0
Real Axis

Fig. 5. Poles map for six models after closing the first
loop.

Active flexible control design

From now on, models considered will include the
“rigid” control loop. So, we can point out which flexible
modes have to be shifted back by the second loop, and
where. '

{1
7

ABLG.D

e WA A s e e

Dynamic feedback

A B . D fe{(p ]

) Fig. 6. Active flexible control design

We must assign the motions of the poles which
moved in Figure 5 in order to push them back to
their open loop location. For that, we define several
inequalities of the form (6), (7), (8) or (9). These
constraints are considered for several flexible modes
corresponding diverse models. For each model we con-
sidered the flexible mode that is the most destabilized
(see Figure 7).
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Fig. 7. Choice of flexible modes to deal with among
several models

Furthermore, we do not want to move the rigid-
body poles. Depending on the choice of the denomina-
tor of the feed-forward transfer, the second loop has or
not a negligible effect on the low frequency design. In
other words, the minimization of the static gain as in
(10) is not sufficient. To prevent this effect, it suffices
to fix to zero real and imaginary parts of low frequency
poles.

For our application, ten modes are to be dealt
with, five rigid modes and five flexible modes. The
constraints are as follows :

.SR('LL].BAIGC()\l) CAIU]_) S 0
R(uzBa,Gc(A2) Ca,v2) < =01
§R(U33A2Gc(/\3) CAZU3) =-0.1
S(U,gBAz Gc(/\;;) CAZ’Ug) =0
§R('u"iBAaG’c(All) CA3U4) < -0.1
R(usBa,Ge(Xs) Ca,vs) < —0.5 (14)
R(usBa,Ge(As) Ca,vs) < ~0.1
(U7BA5 (/\7) CA5’07) <0
§R(U8BAGG (>\8) CAevg) =0
%(UQBAG ()\g) CAGUQ) <0
R(u10BasGe(ro) Cagrio) =0

It remains to choose the denominator of G.(s).
Its order is set to 2, sufficiently high to have enough
degrees of freedom to solve the system of equations
relative to the eigenstructure assignment. The poles of
the denominator of the transfer matrix of the controller
are chosen in the neighborhood of the frequency filter
of the first loop.The loop gain p should be about 1 to
recover open loop flexible dynamics. Finally the order
of the state space realization of the proposed controller
is 2, including the first loop.

The results are analyzed by means of the root locus
given in Figure 8. It appears that rigid modes are
unchanged (as expected). The flexible modes have been
shifted to the left, almost at this open loop location,
without undesirable effects on other poles. From Figure
9 derives that the contribution at the flexible modes is

not more important than in the open loop (refer to
Figure 3).
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Fig. 8. Root locus for six models. “+”denotes “open
loop” poles after closing the first loop and “*”
denotes the poles after closing the second loop.
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Fig. 9. Step responses in tlosed loop for six models.
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5. Conclusion

After the presentation of the theoretical back-
ground the interactive design procedure is detailed
onto a practical auto-pilot design of a flexible aircraft.
The technique used allows to assign the eigenstructure
of the rigid body subsystem without destabilize the
flexible modes. The multi-model approach provides
high robustness.
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