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Abstract

A simple method is proposed for the synthe-
sis of robust dynamic feedback or feedforward
controllers, which satisfy classical time and fre-
quency domains specifications. The only as-
sumption on the plant is to be linear time
invariant. The controller’ is obtained as the
solution of a Linear (or Quadratic) Program-
ming problem when only time domain speci-
fications are fixed.(1) The optimization prob-
lem becomes a LMI problem when frequency
domain specifications are introduced. When
synthesizing a feedforward controller, a multi-
model synthesis is moreover possible.

The method is then applied to the synthesis
of a lateral flight control system for a highly
flexible transport aircraft. Trade-offs between
various specifications are explored.

1. Introduction

The design of flight control systems for future large
body transport aircrafts is a very attractive challenge
and a quite new problem. For a classical aircraft, fre-
quencies of the first structural modes are high enough,
so that a filtering is sufficient to eliminate interactions
between aeroelastic dynamics and rigid control laws.
However, for a bigger aircraft, the frequencies of the
first bending modes become too close to the control
bandwith, so that it becomes necessary to take simul-
taneously into account flight mechanics and structural
dynamics in the control law design.

The convex synthesis technique(2:3) enables to fully
take into account time-domain specifications, unlike
classical approaches such as L.Q, Hy and H,, synthesis.
More generally, time and frequency-domain specifica~
tions can be directly accounted for in the design either
as convex constraints or as convex criteria, which are to
be optimized. As a consequence, this technique allows
- the necessary trade-offs between the various design
specifications to be studied in a systematic way.

- Copyright © 1998 by ICAS and AIAA. All rights reserved

The basic idea of the method is to remark that
many performance specifications as well as some ro-
bustness specifications, which are not convex in the
space of controllers, can be nevertheless expressed
as convex objectives in the space of the achievable
closed-loop transfer matrices. The theoretical basis
of the method is the parameterization of stabiliz-
ing controllers, or more importantly the so-called Q-
parameterization of the closed-loop input/output maps
achievable with controllers which stabilize the sys-
tem.(®)

Boyd et al.®®) showed that with such an approach,
the control design problem becomes a convez pro-
gramming problem. We present in this paper an ap-
proach which enables to obtain Linear or Quadratic
Programming (LP or QP) problems as approximations
of the initial convex programming problem, when time-
domain or SISO frequency-domain specifications are
fixed. When MIMO frequency-domain objectives are
also considered, the initial convex programming prob-
lem becomes now a LMI problem.

The method is then applied to the design of a lateral
flight control system for a highly flexible transport
aircraft. We focus on time-domain responses to typ-
ical pilot requirements and also introduce frequency
domain specifications, which are used to improve the
robustness properties of the controller.

The paper is organized as follows: The basis of convex
synthesis is presented in section 2. The design proce-

- dures are then detailed in section 3. The flight control

system is synthesized in § 4. Concluding remarks end
the paper.
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2. Basis of the method

2.1 An affine representation of the closed loop

Consider the augmented plant P of figure 1 where
u and y are respectively the control input and sensed
output vectors. w and z respectively correspond to the
exogenous input vector and to the regulated output
vector, on which the specifications are expressed. The
transfers H and K respectively denote the dynamic
feedforward and feedback controllers.
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Fig. 1. Augmented plant.

Results 1 and 2 propose an affine representation of the
closed loop response as a function of the control design
parameters. For the sake of simplicity, the method is
presented for the case of scalar inputs and outputs. It
is nevertheless straightforward to extend the method
to the case of input and output vectors.

e Feedforward design:

Result 1. The feedback controller K of figure 1 is
fixed. The feedforward controller H is parametrized
as:

H= i&' H; (1)
=1

where the transfers H; are a priori fixed and the scalars
8; correspond to the design parameters.

A fixed reference input signal y.(t) is applied to the
closed loop. Let z¢(t) the corresponding closed loop re-
sponse (on output z), which is obtained with the feed-
forward controller H = H;. Using then the feedforward
controller of equation (1), the closed loop response to
the signal y,(t) can be written as :

2(t) = Z 6; 2'(t) (2)

In the same way, let Gyz(s) the closed-loop transfer
between y., and z (the feedback K is here again fixed).
The frequency response between y, and z can then be
rewritten as:

F(eijT) — ZQL be(ej“’DT).Hi(ej”JDT) (3)

i=1

where DT is the sampling period.

Remarks 1:

(7} A simple solution is to parametrize the feedfor-
ward controller as a Finite Impulse Response (FIR)
filter in the above result. Other parametrizations are
nevertheless possible: a great deal of work has been
devoted to the problem of building orthonormal bases
of filters, which generalize the classical Laguerre or
Kautz bases(®8) .

(43) If the reference input signal is known in advance
in the real time application, a non causal feedforward
controller H can then be handled in equation (1) {Pre-
dictive control).

Due to the affinity of equations (2) and (3), classical
time- and frequency-domain specifications upon the
transfer between w and z can be expressed as convex
constraints or optimization criteria with respect to the
design parameters 6;.(Y)

¢ Feedback design:

Consider now the augmented plant of figure 1 with
H =1 and partition the transfer matrix P as :

_ | Pun P2
P= [le Pzz]
where P;; (resp. Ps2) is the transfer between w (resp.
u) and z (resp. y).
The Linear Fractionnal Transformation (LFT) corre-

sponding to the closed-loop transfer matrix between w
and z is given by:

F(P,K) =Py + PoK(I — PooK) ™ 'Ps; (4)

Using the Q-parametrization of stabilizing controllers,(®:10)

this closed-loop transfer F;(P, K) can be parametrized
as:

F(P,Kg) =Ti + T>QT3 (5)

. where Ty, T5 and T3 are stable transfer matrices de-

pending on the plant.

As a matter of fact, many design specifications, which
are not convex in the space of controllers K, appear to
be convex in the space of closed loop transfer matrices
Q,® because of the affinity of equation (5) with respect
to Q. As a consequence, the idea of the method is first
to synthesize a transfer matrix @ which satisfies the
design specifications. The corresponding controller K¢
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is then easily obtained using coprime factorization or
direct identification.(3:19)

The Q-parameterization of the stabilizing con-
trollers can be easily obtained using the so-called
modified controller paradigm.® This derivation of the
Q-parameterization starts with any controller K,om
which stabilizes the plant (see figure 2). The key of
this parameterization is that the closed loop map from
v to e is zero on figure 2, so that Q sees no feedback
and can not consequently destabilize the plant.

w z
— —t>
P
u Y

K

o

Fig. 2. Q-parameterization as a modification of a
nominal controller. ’

Doyle(*V) has especially given a nice interpretation of
this Q-parameterization when the nominal controller
K, om is an estimated state feedback. Figure 3 shows
how the free transfer matrix @ is connected : e = §—y
corresponds to the output prediction error and v is an
auxiliary input signal, which is added to the actuator
input signal. The requirement that the closed-loop
transfer matrix from v to e be zero is satisfied, because
the observer error z — £, is uncontrollable from v, and
the transfer matrix from v to e is thus zero.

In the case of an aircraft, K,,, may be chosen to
obtain satisfactory closed loop poles and decoupling
properties.

o f—————Ze
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Fig. 3. Q-parametrization in the case of an estimated
state feedback nominal controller. K, is a state
feedback gain and y = Cyz where z is the plant
state.

Result 2. The feedforward controller H of figure 1 is
now fixed and set equal to 1 for the sake of simplicity.
The closed loop transfer Fij(P, K) between the input
vector w and output z is parametrized as :

Fi(P,K) =T + T>QT; (6)

Let Q an affine combination of the scalar parameters
Hi:

Q= Zei Qi (7)
i=1

where the transfers Q; are a priori fixed. A given input
signal w(t) is applied to the closed loop. Let :

22(t) = Ty w(t)
2'(t) = ToQiTs w(t) (8)

With reference to equations (5-8), it is then possible to
write the closed loop response to the input signal w(¢)
as :

2(t) = 2°(t) + }3 0: 2'(2) (9)

=1

In the same way, it is possible to write the closed-loop
frequency response between w and z as:

(B (P, K)(&7PT) = Fi, (7PT) + 3 i, (7275,

(10)
where -Flo = T1 and .Fl‘. = TzQiTa.

Remarks 2 :

(¢) Here again, the choice of the fixed filters Q; (see
equation (7)) is the main issue. A first solution is to
choose a large base of filters, so as to have a sufficient
amount of degrees of freedom (see e.g.(2)). The order
of the resulting controller K will be however very large
with this method. An alternative method is exposed in
section 4.

(149) It is also possible to simultaneously synthesize the
feedback and feedforward controllers, so as to obtain
a TDF (Two Degrees of Freedom) control law : see
section 4.

2.2 Obtaining LP and QP problems

In results 1 and 2, the time-domain response of the
closed loop was obtained as an affine combination of
the design parameters 6;, namely z(t) = 2°(t) + ¢7 ()6,
where 2°(t) and ¢(t) were a priori computed, and 4
is the vector of parameters ;. In a vector form, let
Z = [2(1),...,z(N)]T the values of the output signal
z(t) at t = 1,...,N. Z can be written as Z = Z° +
®70, where the vector Z° and the matrix & are a priori
known.
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Likewise, the closed-loop frequency response was
obtained as an affine combination of the design pa-
rameters 6;:

[R(P, K)|(PT) = B, (&7P7) + 3 B, (7PT )

=1

Using the above affine representations, we would like to
translate I and [, classical time-domain objectives as
well as some frequency-domain objectives into, either a
Linear Programming (LP) problem or, more generally,
into a Quadratic Programming (QP) problem:(*)

min c78 or min (c7'0 + 67 RY)

A6<b AB<b
The matrix R must be positive definite, so as to obtain
a convex optimization problem.

- Time-domain objectives:

o [, constraints : these can be generically written as
2(t) < Z(t) or z(t) > z(t) for t € [N1, N:]. Consider
as an example the case of a unit step on the reference
input. A [l constraint may typically correspond to a
specification on the maximal allowable overshoot D
(i.e. z(t) < (1 + D) for all ¢t > 0) or the rising time
(e.g- 0.95 < 2(t) < 1.05 for all £ > N).

o I, objectives : consider the problem of minimizing
the value of « satisfying for all £ € [N, Ny] :

—a<z(t) - 2(t) <a (12)

where z.(t) is typically a reference trajectory. This
problem can be expressed as an augmented LP prob-
lem. Let :

Z=[2(N1),...,2(No)]*F = 2° + 379

Zr =[2,(N1), ... ,2-(N2)]T (13)
Define then :

'e}

r=
_a

c=10,...,0,1)T
[ T -1,

A= | —&T —1m]

_ -Zr - ZO
b‘_Zo—Z,] (14)

1,. denotes the unit column vector, of size m = Ny —
N1 +1. The minimization of & in equation (12) is equiv-
alent to the minimization of ¢z, under the constraint
Az <b.

i

o Iy objectives : these correspond to the minimization

of a criterion of the form ¢78 + 6T RA. Consider e.g.
that the quadratic error between the response z and
the reference trajectory z, is to be minimized, namely:

Na
T =3 (2() - 2 (1) (15)

=N

Note that :

(2(t) = 2:(1)* = (T (1)8 + 2°(t) - 2 (¥))* (16)

so that J can be rewritten as :

J=272+227370 + 673370 (17)
where Z = [2%(N}) — 2.(N1), - .. , 2°(N2) — 2-(No))T.

Remark 3 :

Strictly speaking, a parametric model of the closed-
loop system is not required for these time domain spec-
ifications. It suffices to be able to measure the closed-
loop response of the plant to a given input signal.

- Frequency-domain objectives:

In the frequency domain, it is possible to translate
SISO H; or H, specifications into a LP or QP prob-
lem.

e H,, constraints : these can be generally written as

[Fi(P, K))(e?“*PT)| < I(wy) for wy € [wy, ..., wN]
(18)

where I(wy) is the template which is to be satisfied.
Note that the above constraint is convex, but not affine
with respect to the parameters 6;.

Let z{wy) and y(wg) the real and imaginary part
of [F(P, K)](e?**PT), and note that the real functions
z{wyg) and y(wy) are affine with respect to the param-
eters 6;. Consider then the following inequality:

[F (P, K))(e7*PT)| = /a2 (we) +y2(we) < lo(we)] + ly(we)l

(19)
and remark that:
{x(wi)| + [y(we)] < I(wg), Ywg € [wy,... ,wN]
—z(wi) + y(we) < I(wg)
= § o) TV S TR G € fun, - ywn]
z(we) + y(wi) < I{wg)
(20)

The initial constraints (18) can thus be transformed
into linear constraints on the parameters 6;. Due to the
inequality (19), this approach nevertheless introduces
some conservatism.
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o Hj objectives : these correspond to the minimization
of a criterion of the form ¢ +67 R. Consider e.g. that
the quadratic error between the frequency response
[Fi(P,K)](e’*:PT) and a reference frequency shape
F,(e7¥PT) is to be minimized, namely:

N

J = S |B@ K PT) — Fy(e:PT)|

i=1
With respect to equation (10), let F;,_ and Fj, _ the
real and imaginary parts of F;,. In the same way, F,
and Fj,  respectively denote the real and imaginary
parts of Fj,. J can then be rewritten as:

J=FL F, +FL R, +2[F. 8%, +FF &T 16
+67T [BR.BF, + Brm®T,,] 0

(21)
where:
[FloRe - Frne](wl)
R = :
[Fiup, = Frac (wn)
and: .
El&e (’U)l) ...... F‘lng (wl)
S By, (w2) B, (w2)
FllRe (wN) ...... ‘Flmae (wN)

and F;, and ®;,, have similar expressions.

2.3 Obtaining LMI problems

The above approach for taking into account H,, con-
straints is a priori conservative. It is more impossible to
consider MIMO frequency-domain specifications with
this method, so that we now use LMIs(!?) to take into
account in a non conservative way MIMO frequency-
domain specifications, which may typically correspond

to robustness requirements on the closed-loop. Before

presenting the LMI formulation of our problem, the
following lemma is needed.

Lemma 2.1. : Schur Complement
Let M € R**™, R and S two symmetric matrices of
dimension n x n and m x m respectively, then

R M R>0
(MT s) >0 = {S—MTR‘1M>0
(22)
— §>0
R-MS'MT>0

Using this lemma, the following well known result is
obtained:

Result 3. Let M € R**™

F(M) = /Amae(MTM) < & <= (Ajﬂ O"g_) >0

(23)

Furthermore, let G be a complex matrix € C™*™, the
following result holds:

Re(G) Im(G)

G>0 = (—Im(G) Re(G)) >0 (24)

Consider now a classical H,, MIMO specification of
the form:

F([Fi(P, K))(e7+PT)) < I(e*PTY for wy € [wy,-.. ,wN]
(25)

Using equations (23) and (24) and the parameteriza-
tion of the closed-loop transfer [F;(P, K)] of equation
(10), the constraint (25) can be translated into the
following LMI problem:

(74 Re(M) 0 Im(M)
Re(M™ I Im(M* 0

e(o ) —In?(M*) mo(zI : Re(r)| >0 (26)
—Im(M) 0 Re(M™)) ol

where the complex matrix M = [Fj(P, K)](e/**PT) is
an affine function of the parameters 6;.

3. Design procedures

On the basis of the above results, we can now summa-
rize the design procedures of dynamic feedforward and
feedback controllers as follows:

Synthesis of a dynamic feedforward controller:

e Step 1 : choose an affine parametrization of the
feedforward controller :

H=Y 08,
i=1

o Step 2 : let H = H;. Compute the closed loop
response w'(t) to the reference input signal y,(t).

e Step 3 : when using the feedforward controller
of equation (27), the closed loop response z(1) is
obtained as:

(27)

() = i 0:2(2) (28)
i=1

and the closed-loop frequency response is given
by:
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F(e7PT) =3 "0; Gyp(e™PT) Hi(e?PT)(29)
=1

Using the results of the previous section, it is then
possible to translate the time and frequency do-
main specifications into a LP, QP or LMI problem.
e Step 4 : the 0;’s are directly obtained as the
solution of the optimization problem, which is to

be solved.

The procedure for synthesizing a dynamic feedback
controller essentially follows the one for synthesizing a
dynamic feedforward controller.

Synthesis of a dynamic feedback controller :

e Siep 1: choose an affine parametrization of Q :

Q=) 6:Q;
=1

The closed loop system is then obtained as 17 +
ToQTs.

e Step 2 : Let a given input signal w(z). With
reference to equation (8), compute the closed loop
responses z°(t) and z(t) for i=1, ... ,n.

e Step 3 : when using the affine parametrization of
Q (see equation (30)), the closed loop response
z(t) is obtained as:

(30)

z(t) = 2°(t) + Zo,-zi(t) (31)

and the closed-loop frequency response is given
by:

[FL(P, K)|(€P7) = B (5%P7) + 3 B, (76,

i=1
(32)
Here again, use the results of the previous sec-
tion to translate the time and frequency domains
specifications into a LP, QP or LMI problem.

o Step 4 : the 6;’s are first obtained as the solution
of the optimization problem, which is to be solved.
The corresponding transfer matrix @ is computed.
See(3:11) for the obtention of a state-space model
of K from a state-space model of Q.

Remarks 4:

(?) Results 1 and 2 and the above design procedures
can be easily extended to the continuous-time case : as
done in section 4, it suffices indeed to handle the values
of the signals at each point of a time- and frequency-
domain griddings.

(i1) Standard routines are available in MATLAB for
solving the LP or QP problems. Note however that
more efficient algorithms may be used if the size
of the problem (i.e. the dimension of matrix. 4 in
the constraint A0 < b) is very large : see e.g.(13)

and included references. This may be especially the
case when considering MIMO systems with a small
sampling period.

(¢43) The LMI problems are solved using the LMI
Control Toolbox of MATLAB.(14)

4.
Application: synthesis of a flight control system

Our complete aircraft lateral model is a high order

(~ 60) linear time invariant transfer matrix. It espe-
cially contains the three lateral rigid modes (spiral, roll
and dutch roll) and 15 structural modes. The measured
outputs correspond to the lateral acceleration n,, the
roll rate p, yaw rate r and roll angle ¢ at different
locations on the body. Given a sensor selection, the first
step of the design is to build a standard augmented
plant and to synthetize an initial controller (an esti-
mated state feedback for example).
A static transfer matrix @ is first used, so that the
order of the controller is equal to the order of the
augmented plant. A dynamic transfer matrix Q is then
used to have more degrees of freedom for tuning the
controller. Note that the dimensions of ¢} are the same
as the dimensions of K.

We first emphasize that the convex synthesis
techique can largely improve the performance of the
initial controller. We show then that the convex syn-
thesis techique enables us to study in a systematic
way various trade-offs between the specifications of our
problem.

4.1 Aircraft model and performance specifications

A lateral model of a flexible transport aircraft is
considered. Two lateral control surfaces, namely one
aileron 6, and one rudder 4,, are used to pilot this
aircraft. The outputs, which will be used by the feed-
back controller, are chosen as the lateral acceleration
ny, the roll and yaw rates p and r and the roll angle
¢, measured at the center of gravity of the aircraft.

The synthesis model is a linear time invariant trans-
fer matrix of order 16 (a fourth aerodynamical model,
a first order actuator on the rudder and the aileron and

. 5 structural modes).

When building the augmented plant of figure 1,
additional outputs are considered in the design. These
regulated outputs, which are not used by the control
law, are introduced to express the design specifications.

Performance specifications The inputs and out-
puts of the augmented plant of figure 1 are defined as
follows :
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¢ The exogeneous input vector w contains the reference
inputs 3. and ®. on the sideslip and roll angles 8 and
®. Because of the small gain constraint exposed in the
following, it also contains perturbation inputs on the
measured outputs 7, p, 7 and ¢.

e The control input vector u contains the actuator
inputs 6, d-.

o The regulated output vector z contains :

- the 2 actuator outputs.

- the 2 actuator rate outputs.

- the sideslip and roll angles 8 and ® and the
derivative ¢ of ¢ with respect to time.

- the 2 actuator inputs (which are used to introduce
the small gain constraint).

e The measured output vector y finally contains the
lateral acceleration n,, the roll and yaw rate p and r
and the roll angle ¢.

We now present the main design specifications. As a
first point, we consider the step response of a first order
filter, which represents our first reference input signal.
This filtered step is applied to the reference sideslip
angle 8. The specifications are :

e The sideslip angle § must track the reference
input signal with a rise time of less than 6 seconds
*, an overshoot of less than 20 % and a zero static
€ITor.

o the roll angle must remain between two extremal
values :

Pmin < ¢(t) < bmaz Vit (33)

e The steady-state value ¢, of the roll angle must
satisfy ¢s ~ —[0s, where (s is the steady-state
value of the sideslip angle.

As a second point, a step is now applied to the roll rate
output p. The specifications are essentially the same as
above:

e The roll rate output must track the reference

* input signal with a rise time of less than 6 seconds
and a zero static error.

o the sideslip angle must remain between two ex-
tremal values :

—e<BE)<e V¢ (34)
The following specification is also requested for both
responses above, to take into account saturation con-
straints :

o The actuator outputs must remain between + 30
degrees.

* The rise time ¢, is defined here as 0.95 < y(¢) < 1.05 for all
t > tr, if y(t) is the unit step response of the closed loop.

o The actuator rate outputs must remain between
£ 50 degrees/s.

As a final point, the following robustness specifica-
tion is considered:
A small gain constraint is added to ensure the ro-
bustness property with respect to the bending modes,
which were not included in the design model and which
are thus considered as neglected dynamics:

T([Fryw,)(fw)) < v.I(w) for w € [wy,... ,wN]

where the vector z; corresponds to the actuator inputs
and w; corresponds to the perturbation inputs on n,
p, 7 and ¢.

The value « is either fixed or to be minimized.

4.2 Synthesis of the flight control system

As a preliminary, an initial estimated state feed-
back K,om and an initial static feedforward Hy,,, are
synthesized. A modal method is used to ensure satis-
factory closed loop poles and nearly perfect decoupling
with the feedback K, ,m. On the other hand, the static
feedforward is used to respect the classical steady state
design specifications (see above):(1%)

o= 15001

We present in figures 6, 7 the time-domain re-
sponses on the sideslip angle and roll rate output
obtained with this nominal controller.

(35)

The LMI method is then applied to the augmented
plant of figure 4. Note in this figure that the reference
inputs y, are included in the measured outputs y,
so that a TDF (Two-degrees-of-freedom) control law
is synthesized : the feedback comtroller K and the
feedforward controller H are indeed simultaneously
synthesized, and K and H are two transfer matrices
in figure 4, which share the same dynamics.

A static transfer matrix Q is first chosen, the

~order of the control law remains equal to the order

of the augmented plant, namely 16. Consequently,
12 parameters §; are to be optimized, namely 8 for
the feedback part of the control law and 4 for its
feedforward part .

We would like to study the trade-off between the small

T 8 = 4 * 2, since the aircraft model contains 2 inputs and 4
outputs.

4 = 2 * 2; since the aircraft model contains 2 inputs and there
are 2 reference inputs.
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[K(s) , H(s) | [t

Fig. 4. Augmented Plant with initial feedback Kpom
and feedforward H,om

gain constraint and the reduction of the influence on
the closed loop time domain responses of the bending
modes, which are included in the synthesis model. To
this aim, a value of v is fixed and the minimization of
the difference |3 — G, between the step-response on the
sideslip angle on the output 3 and a reference signal
Br - which corresponds to a rigid response - is chosen
as the optimization criterion. By this way, we directly
minimize the contribution of bending modes on this
output.

The other design specifications are expressed as oo
constraints.

The optimization problem, which is to be solved

is an LMI problem, as exposed in section 2. Due to
the sampling griddings and lengths of the responses
considered, the LMI problem to solve contains 7000
LMIs and 3 variables, corresponding to the parameters
8; and ~y. The problem is solved using MATLAB in 5
to 15 minutes.
Various controllers have been designed for several
values of . The difference |3 — 3, is minimized in
each case. As expected, note that the less the small
gain specification is constraining, the more the bending
modes contribution can be reduced. Figure 5 presents
the trade-off between « value and this contribution.

sup Ibeta - betar

1 1 L i ‘ : L 1 1
[+] 10 20 30 40 50 60 70 80 90 100
gamma

" Fig. 5. Trade-off between sup|8 — ;| and .

Next, a dynamic transfer matrix @ is then used to
have more degrees of freedom for tuning the controller.
We consider a base of filter which contains only gain
filters and one filter of order one. 24 parameters §; are
now to be optimized and the order of the matrix Q
obtained is equal to 2. Consequently, the order of the
control laws is then equal to 18.

Using this dynamic matrix Q, we can both easily
reduce bending modes contribution and satisfy a good
small gain constraint (y = 1).

We present in figures 8, 9, 10 and 11 the time-
domain responses on the sideslip angle and roll rate
output for different cases : The time-domain responses
8 and 9 are obtained for a value of v = 1 using a static
transfer matrix Q.

The time-domain responses 10, 11 are obtained for the
same value v, using the dynamic transfer matrix Q.
Note that the additional degrees of freedom, which are
provided by the use of a dynamic transfer Q, enable to
achieve a much better trade-off : using a static matrix
Q, the same level of reduction of the bending modes
contribution would require to increase v up to v = 100.

5. Conclusion

We have proposed a new approach for synthesiz-
ing feedforward and feedback controllers, which allows
time- and frequency-domain specifications to be ac-
counted for as convex objectives. Consequently, trade-
offs between the various specifications can be studied
in a systematic way. Moreover, the proposed method
enables LP, QP or LMI problems to be obtained as ap-
proximations of the initial convex programming prob-
lem.

As an application example, we have considered the
case of a highly flexible transport aircraft. We have
especially optimized the trade-off between a small gain
constraint, related to some robustness property with
respect to unmodeled bending modes, and the reduc-
tion of the influence on the closed loop time domain
responses of the bending modes. The use of a dynamic
transfer @) provides more degrees of freedom for tuning
the controllers and satisfying the set of specifications.
Another main trade-off concerns the control bandwith.

_ On the one hand, we would like to minimize this band-

with, so as to maximize the robust stability properties
with respect to unmodeled structural modes. On the
other hand, we would like to maximize this control
bandwith, so as to ensure a fast rejection of exoge-
nous perturbations (especially wind disturbance). This
trade-off will be further studied in the context of a
flight control system, which actively controls some of
the bending modes.
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