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Abstract

The problem of optimization of multistage
launcher ascent taking account return of spent
components to specified fall zones is consid-
ered. The topicality of revising nominal ascent
trajectories stems from the necessity of reduc-
tion of ecological aftereffects of dropping spent
components especially when diverse launchers
are used for wide nomenclature of payloads in
conditions of the contraction of the alienation
areas.

The solution is based on the employment of the
indirect optimization method of the type of the
Pontryagin's maximum principle for branched
trajectories. A good convergence of boundary
problem solutions is practically invariant with
an initial approximation choice owing to the
application of the numerical quasi-Newtonian
procedure together with parameter continuation
and local extremal selection methods. The ap-

proach is realized in the automated program
complex "ASTER".

It is proven that the restrictions on spent-
component fall zones result in a qualitative re-
structure of the optimal thrust-vector control
and in appearance of several local extremals.
Some numerical examples are given as con-
cerns optimal injection trajectories with re-
strictions on fall zones for spent boosters and a
nose cover. The possibility of reducing consid-
erably alienation zones for a wide range of
orbits to be served with minimum reduction in
payloads injected is shown.
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Introduction

With expansion of the nomenclature of pay-
loads and target orbits and intention to use di-
verse launchers and their modifications, in par-
ticular within the framework of the conversion
program, the problem of forming such optimal
trajectories that would ensure maximum weight
efficiency, provided the spent components re-
turn at specified areas to reduce environmental
aftereffects of their fall, becomes urgent. The
necessity of revising nominal injection trajec-
tories can also be caused by alterations of
permissible alienation zones because of
changes in the legal status of these territories,
rental payments, etc.

The limitation on the spent component fall
point leads obligatorily to a qualitative change
in the optimal control program for the pitch
angle. Indeed, according to the classical results
for the optimal spacecraft injection control in
the uniform gravitational field!® the introduc-
tion of any conditions on the flight range re-
sults in the fact that the optimal program of
changing the pitch angle tangent is described
by a linear-fractional time function rather than
by a linear one.

The most comprehensive and objective infor-
mation on the effectiveness of space transpor-

~ tation systems (STS) can be obtained only on

the basis of the complex consideration of all
flight phases of STS and its components simul-
taneously.

In the present work, the problem of injecting a
space transportation system with a maximum
mass into a specified satellite orbit including
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limitations on spent component fall zones is
solved using the indirect method based on a
thorough optimization of branching processes®
of the Pontryagin’s maximum principle type®®.
It is shown that by transferring the conditions
from the right ends of trajectories of separated
STS components to separation points the refer-
ence multi-point boundary problem can be es-
sentially reduced. The investigation is per-
formed for the deterministic nominal flight
conditions. A probabilistic scatter of spent
component fall points is not considered.

The developed method is implemented in the
ASTER program complex®>. To provide the
complex operation regularity and independ-
ence, the procedures of parameter continuation
of the solution and local external selection are
used. It allows the known (obtained previously)
optimal trajectories to be used as an initial ap-
proximation regardless of* their "closeness" to
the stated problem. The developed ASTER
complex interface of Windows type makes
specifying the reference data and processing the
results obtained maximum convenient. The
database of the reference parameters and the
calculation results which contains all the vari-
ants calculated over the whole operation time
of this complex supplements essentially the
complex.

The investigation results for optimal trajecto-
ries of injecting multi-stage launch vehicles,
when spent first- and second-stage boosters and
nose covers are dropped at specified points, are
presented as the application of the developed
method and the program complex to the solu-
tion of practical problems of rocket dynamics.
The requirement to reduce the spent STS com-
ponent fall zones is one of the main conditions
of providing an admissible safety level and en-
vironmental friendliness of space flights. The
optimal control laws allow the requirements for
spent components fall regions to be satisfied in
a wide range of orbit parameter values almost
without reducing the payload to be injected.
The optimal control programs with considera-
tion for limitations on trajectory branches en-
sure a new quality for advanced STS and those

used at the present time: the capability of direct
(without maneuvers to change the orbit plane)
injection into orbits in a wide range of inclina-
tions with retention of or even with reduction
in the standard spent component fall zones.

1. Problem statement

The trajectory of inserting a space vehicle into
an orbit is shown schematically in Fig. 1, where

s; is the start point, s is a point of reaching a
specified orbit, s/,2< j<n-1 ,are points of
separating spent components, s{ ,3<j<n, are
points of falling spent components to the Earth,
b/ is a continuous trajectory branch between

: J J+l
pointss/ and s/,

Figure 1: Branched insertion trajectory.

In arcs b/, 1 <j<n-1, which form the main
branch, the state equations are described in the
general form as follows

] =1/ (xmi,ul,t) te[e], 1]

L , (D
m; = H

where x7 is the state vector, u’ is the control

vector, t1s the time, m,f is the mass, ,u,’ 1s the

" mass flow rate. In general, m] and 4/ may be

vectors with components for different types of
engines.

Assume that dropped structural components
(side branches b5/,2<j<n-1) move in
nominal flight conditions (without accidental
disturbances) under determinate control and the
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state vector x; and mass m; on the branch 5/
are governed by equations

x;=1/(x]),2<j<n-1
i =0, te[T{,TZj]
At points

@)

s{,2<j<n-1, the state vectors
are taken to be continuous

x; ' (T)-x{(2)=0,x] (t)-x} ()= 0, (3)
and the whole mass is kept constant
m!"(T)—m](x)-mi(z)=0. 4)
The mass of dropped components is assumed to
be specified:

mj, 2< j<n-—1, is fixed. (5)
The moments 7/ =7/ =7/,2< j <n, of the

trajectory branching are defined by scalar
conditions

Q' (/" (Mm{(1))=0, 25 j<n-1 (6)

The staging point is generally determined by
the condition of attaining a specified mass my,

S=m ' (T)-m, =0  (7)

and the nose cover release moment depends on
the intersection of a conditional boundary of
the dense atmospheric layers which is defined
by a function of the flight velocity v and alti-
tude A

0’ (1), W(T7"))=0. ®)
Start conditions and conditions of attaining a
specified orbit are assigned at points s (¢=t,)
and s; (r=ty).
Let require that dropped components fall at a
specified point, i.e. a radius-vector at a fall
point:

v(T; )is fixed . )

The functional to be minimized is the mass of
expendable fuel

D= m(s,’) - m(s,"). (10)

W)

3. Maximum principle conditions

The optimization problem for space vehicle
insertion with some limitations on fall points
for spent STS components is solved by the in-
direct method of optimizing branched trajecto-
ries of the type of the Pontryagin's maximum
principle. A specific feature of this problem is
displayed only in the expression for the trans-
versality conditions at the branching points

{s{,ZSan—]} and at the ends of side

branches {sg 3<j< n}.

Let introduce the following notations for the
adjoint variables on branch 5/ :

P/

{

is the adjoint vector corresponding to ra-
dius vector r/,

S/ is the adjoint vector corresponding to ve-
locity vector v/,

P} is the adjoint variable (or a vector) corre-
sponding to mass m/ and

#! is the Hamiltonian.

In accordance \Nith(3), we obtain for the state

conditions (3) to (6) and (9) and the functional
(10) the following transversality conditions.

At points {s} 2<j<n —1} we have:

:NT
o 507
PIJ = PIJ 1 —sz —ﬂ,j_l(‘a‘_r]jf_l ’

. i . J
S/ =8/ -8/ -xlj_,(av—{f_l

. - 00!
b, = P,ill —Z’j—l aijI_I )
HI=HIT ~ I (12)
" Parameters A;; in (11) are found from condi-
tion (12):
o‘)Qj aQJ . aQJ .
l.j"[o"r{i’ VT o }: (13)

. PRV AR ; N . .
=@/ -»}) v+ -81) Vi +Bl'm].

J
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Note to Eq. (13): Equation (13) is nonlinear
with respect to A, because this parameter
enters into the optimality conditions for the
control u and, accordingly, into "’{ and m{ At
can be transformed to the quadratic equation
with respect to Aj.; (the only root is satisfied
Eq.(13)).

In a particular case, when the moments of tra-
jectory branching are determined by the attain-
ment of a specified mass (see (7)), the transver-
sality conditions (11) to (13) take the form

P/ =P/ P

S/ =8/"-8], (14)
[’H{l = Pmlll A
where
- (P,j" —P{) v) +(Sj:‘: —S’) \ R 2 (15)
ml

(see note to Eq. (13)).

In the case (8), the transversality conditions

(11) to (13) take the form
J
P/ :P/-I-p;-ﬂghf c,
J
Isi=si_si o292, (16)
2o ¢
PJ — PJ -1

ml — *ml

\

where €y is the unit vector in the direction from
the gravity center to the separation point s/, e
is the unit velocity vector and

- P_,j)rvj +@/ —Sf)rv" + PJy ']

aQ/ oTo (17)
&0 v I

RV+

&h
(see note to Eq.(13)).

The transversality conditions at the fall points
(see (9)) take the form

P/ = var,
|83 =0,
(=T \p (18)
i—(PTvY =
ﬂz—(P v);—O.

4. Boundary-value problem

Use of Pontryagin's maximum principle makes
it possible to reduce the initial optimization
problem to a multi-point boundary-value prob-
lem for the state and adjoint equation sets. In
the case of the optimization of the STS ascent
trajectory with a single side branch the dimen-
sionality of the boundary-value problem does
not exceed the value of (k;+k;), where k; and &
are dimensionalities of equation sets (1) and (2)
consequently. Because the right parts of equa-
tions (2) are independent of the control the
boundary conditions (18) are fulfilled either by
means of double integration, i.e., integration of
the state system in direct time and the adjoint
system in inverse time, or by means of one it-
eration using the Newton method, thus provid-
ing the projection of the boundary conditions
from the right ends of side branches on the
main branch. In this case, according to
Eq. (18), the boundary-value problem dimen-
sionality is reduced to (k;+2).

To continue the solution in terms of a parame-

ter £, for example, the optimal solution without
the limitation (9) can be considered as a refer-
ence solution. It is convenient to introduce the

parameter £ as an angular range between a
specified vehicle component fall point and an
optimal fall point obtained without con51der1ng
this limitation.

In the reference case with taking account of
(18), the adjoint vectors at the right ends of the

side branches {sg} are zero and by virtue of the

linearity of the adjoint system we obtain a triv-
ial solution on the side branch (see conditions
of jump (11), (14) and (16)):

Pi(z)=Si(c)=P,(z)=0. (19

5. Local extremals

The conditions of the Pontryagin's maximum
principle make it possible to find local extre-
mals only. In order to obtain a solution provid-
ing a global optimum, special investigations are
required. In the earlier paper(3), some typical
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families of local extremals as applied to the
problem of aerospace vehicle orbit insertion are
demonstrated, a physical nature of their appear-
ance is suggested and the conditions under
which they are capable of providing a global
extremum are stated.

In the problem considered here, local extremals
due to an additional limitation on fall regions
for spent components are also expected.

Indeed, assume for definiteness that the 1st
stage flies according to the gravitational turn
program. Then, the 1st stage trajectory de-
pends, in fact, only on one parameter, namely

on the "initial" trajectory angle ¥; realized after
a short portion of the vertical ascent and intense
pitch turn.

Let the following notations be introduced:

Yion - angle % at which maximum mass m,,,
is inserted;

7., - angle % at which maximum mass
m,, =m,(L,) is inserted provided Ist-stage
booster falls at a specified distance L; from
the start point;

YiL,,, -angle % at which Ist-stage booster fall

ITmax °

distance is maximum (L ;=1L

In the region L, <L, the dependence

max ?

7:,, =7(L,) is non-single-valued. Let the up-
per branch of this curve be denoted by 7;*(L,),
and the lower branch by ¥/*(L,) (Fig. 2).

I

Hence, the dependence of maximum inserted
mass on the limitation on 1st-stage booster fall
distance is also non-single-valued and has two
branches:

m;le :mf(jfl."p(Ll)) and m}ole =mf(}’ilow(Ll)),
which correspond to two types of local extre-

mals differing in altitude. Depending on rela-
tions for ¥, , and ¥, ., three types of the

curve my(L) are possible (see Fig. 3) which dif-
fer in the type of a local extremal providing a
global optimum. In the region of L, < L, _ the

low

curves m;"(L,) and m/"(L,) can have an in-
tersection point which is a bifurcation point for
optimal trajectories when varying the limitation
on the 1st-stage booster fall distance.

Yi Y:" (LI )

7

I max

Figure 2: Qualitative relationship between the
initial path angle ¥; and the fall distance L.

Figure 3: Different types of the relationship be-
tween maximum inserted mass and the limitation
on booster fall distance.

Note that the above qualitative considerations
to validate the existence of two types of local
extremals are based on the logic of local
(small) variations. Therefore, in applying the

- Pontryagin’s maximum principle, which is

valid for strong (needle-type) control varia-
tions, the second (worse) extremal may not
manifest itself (not satisfy the maximum prin-
ciple conditions). For example, only one, the
optimal solution exists for the optimal R-type
launcher (see Sec. 6) injection with the limita-
tion on the fall distance of the I-stage booster.
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6. Numerical results

To illustrate the method considered above, op-
timal branched trajectories for insertion of a
multi-stage launcher with limitation on spent
components fall distance were calculated using
the "ASTER" program package @) Two types
("P" and "R") of launchers are considered.

P-type launcher has 4 stages with initial mass
ratios as 1 : 0.35 : 0.10 : 0.03. The limitations
on the launcher control and motion are as fol-

lows: |a| < 5°(1st-stage), ]qal <9.10°kgf/m’

(Ist- and 2nd-stages), « is the angle of attack, g
is the dynamic pressure. The launcher is in-
serted into a circular orbit with a height of
hoy=200km and nominal inclination of
iy =51.6°, the start point latitude being
$=46°.

M0
0.9 an;)w(l 1) /?
0.8 24 "’%?(LI)

]

P
0.7 7 T
lei[
0.6
00 02 0.4_0.6 0.8 1.0
L

. .o —
Figure 4: The relative inserted mass M, vs. the

relative 1st-stage booster fall distance L;.

Fig. 4 exemplifies the relative maximum injec-

ted mass 7 f(fl )= M versus the rela-

max m
L; !

tive distance of the I-stage booster fall point
L, =L;/L; . - Two types of global extre-

mals and respective optimal pitch angle pro-
grams for the bifurcation value of

L, = L,,; ~0.49 are shown in Fig. 5.

The capability of reducing considerably fall
regions for a spent 1st-stage booster due to the
optimization of a three-dimensional launcher
maneuver during insertion was investigated for
a wide range of orbit inclinations. In particular,

9, deg
904
] ; N
1 \\
S
TN
[

/ —o— reviL)
S —&— 7, e7(L)

500 1000 1500 2000
distance, km

Figure 5: Optimal pitch control programs and

optimal insertion trajectories in the vertical

plane for different types of local extremals at
the bifurcation point.

the capability of directing the spent 1Ist-stage
booster to one point is discussed for the range
of orbit inclinations of 51° < j,,,< 72°.

The comprehensive analysis of all flight phases
using the same criterion ensures, on the one
hand, the most complete consideration of spe-
cific limitations and, on the other hand, the
realization of the best insertion scheme and a
maximum weight efficiency.

~ If a specified fall point is aside from the nomi-

nal insertion trajectory trace the optimal launch
azimuth is varied so that the insertion portion
for the 1st stage be oriented to a specified fall
point (Fig. 6).

Upon separation of the 1st-stage, the launcher
performs an intense banked turn so as the in-
sertion plane inclination almost coincides with
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| T
454~

66 67 68 69 70
6 deg

Figure 6: Optimal launcher trajectories for
fixed Ist-stage booster fall points: A - the fall
point is free, B, C - the fall points are fixed,

e - fall points, * - staging points.

63 64 65

the inclination of the orbit plane, the pitch con-
trol program remaining essentially the same
(Fig. 7). )

If an additional condition is introduced to
specify the fall point for a spent 1st-stage
booster, this condition causes, of course, some
reduction in the mass Amy to be inserted. The
value of Amy is, as a rule, of the 2nd-order in-
finitesimal with respect to the distance of the
specified fall point from the optimal one. (The
optimal fall point corresponds to the solution of
the problem without the fall point limitation.)
Therefore, small deviations of the fall point do
not almost affect the inserted mass.

Fig. 8 presents in the geographic coordinates
(latitudeg vs. longitude 6) level lines for the
inserted mass in the case of variations of speci-
fied 1st-stage booster fall points at orbit incli-
nations of i,; = 51.6° and 72.6°. It is seen that
the optimal fall point lies near the boundary of
the Earth's surface region attained limitedly by
the spent 1st-stage booster. This means that the
optimal 1st-stage insertion trajectory providing
the delivery of maximum payload to the orbit is
close to the trajectory which is optimal by the
criterion of the 1st-stage booster range.

It is worthy of note that the requirement on
falling the 1st-stage booster in one or several

o, deg
80
4! —e— A
20 —t+— B
1| > C
0+ s -
4 160 200 300 400 500 \600
20 ot time, s
R I
-40 : /y///? s
] P
-60 ! /
-80 L
o, de
40g
] !\*\\
20 ""“’\-\#\h
_ L~ \N
1 e \\E
0 Y —@— A
B —+— B
—3— C
_20 ——T . ]||1|' —rT —r——
100 D00 3(£0 400 500 600
40 P tinlze.s
9, deg
90+ \
\ —o— A
60 - +~— B
] \ +C
30 S
0 100 200 300 400 500 600
time, s

Figure 7: Optimal roll, angle of attack and
Dpitch programs for the insertion trajectories

~ with different fixed fall points (see A, B and C

cases in Fig. 6) .

specified regions allows a qualitative im-
provement of the insertion flexibility because it
provides any-direction launch. Indeed, the in-
sertion orbit inclination can be chosen in this
case not from several values but from a con-
tinuous set.
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=0.0317 m,,.=0.0326
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Figure 8: Relative maximum mass my inserted
into orbits with inclinations of i,,=51.6° and
72.6° as a function of specified Ist-stage
booster fall points.

R-type launcher has 3 stages with initial mass
ratios as 1:0.20:0.06. The control limitation on
the Ist-stage is as o = 0. The launcher is in-
serted into a circular orbit with a height of
hors =295 km and inclination of i, =51°, the
start point latitude being ¢ = 50°.

A similar investigation through the use of the
ASTER program complex is carried out for the
optimal R-type launch vehicle injection when
the spent 1st- and 2nd-stage boosters and the
nose cover are dropped at specified Earth sur-
face points.

Fig. 9 shows in the geographic coordinates
(longitude-latitude) the boundaries of the Earth
surface regions attained by the spent 1st-stage
booster for different admissible relative losses
in the injected mass ami, . Here, am, is the ratio

of the maximum injected mass change due to
the limitation on the Ist-stage booster fall
point, to the maximum mass injected into a
specified orbit with a free 1st-stage booster fall
point. The level lines

ams(6,9) = const, (20)
depicted in Fig. 9, if presented in the coordi-
nates of the longitudinal and lateral distances
from the launch plane, are essentially inde-
pendent of the target orbit inclination.

A significant deformation of the level lines for
inclinations close to the launch point latitude
stems from the fact that there are two local ex-
tremals, very close in terms of the functional
(within ~0.01%), which provide the injection
into an orbit with a specified inclination but
differ in the launch azimuth, i.e., the injection
into the "ascending" or "descending" orbital
portion (see(3)). When the inclinations are close
to the launch point latitude, these extremals are
located close to each other and the level lines
(20) intersect for each extremal.

The similar regions of accessible fall points for
the nose cover and the 2nd-stage booster are
shown in Fig. 10.

Fig. 11 demonstrates losses of the relative
me(L )

max m
L f

maximum injected mass 7, ( L)=

due to limitation on the relative distance
L = L/L,,, of a fall point for the Ist- and

2nd-stage boosters and for the nose cover.

latitude, de;
65

i |
[s=97°

] m,,,=0.02865 Lo
60 =0.0312
55 - i
T i,=51
i m,,,=0.03341
: (local extremal)
50 - |
. . =51
] optimal m;,,=0.03343
_ insertion \@al_ extremal)
45 — trajectories
] ! preset Ist-stage booster :
. fall points ‘
- 40 TTT7T I T l TT I TTTT [ LRI I‘ TTTFT TTTT l

115 120 125 130 135 140 145 150
longitude,deg

Figure 9: Boundaries of the Earth surface re-
gions attained by the spent Ist-stage booster
Jor different admissible relative losses in the
injected mass am .
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Figure 10: Boundaries of the Earth surface re-
gions attained by the spent nose cover and 2nd-
stage booster for different admissible relative
losses in the injected mass aML, .

my

1.0

0.9

]
|
! i 2nd-stage
06 | /| booster

05

Figure 11: The relative inserted mass m; vs.

the relative fall distance L of the Ist- and
2nd-stage boosters and nose cover.

In principle, it is shown to be possible to pro-
vide such STS injection that the STS compo-
nents, spent on different injection trajectory
portions, fall at one and the same point. Fig. 12
illustrates the losses in the maximum injected

mass m, = , provided the condition that

M opt
the 1st-stage booster and the nose cover fall at

one and the same point, as a function of the
distance L, of the common fall point from the

launch point. For comparison there are shown
dependencies m,(L) (dash lines) correspond-

ing to solutions of two problems considered
above: the first accounts for limitation on the
Ist-stage booster range, and the second account
for limitation on the nose cover range only.

mye

100 ——— - e
5 : /\ ~—
q Ist-stage j P nose
- booster / N cover
T, \

0.50 / \

I I

0.85 &
& nose cover + 1st-stage booster
. ! !
080 L l T 1T 1T 71 l T T T i T 1T T 71
800 900 1000 1100 1200

L, km
Figure 12: The relative maximum inserted mass
My vs. the range L of a common (the Ist-stage

booster and the nose cover) fall point.

Conclusions

The integration of the technology of the thor-
ough optimization into the engineering practice
of space vehicle designing enables the optimal
injection trajectories to be formed both for ad-
vanced and existing STS based on the regular
procedure with due regard for new require-
ments, limitations and control features. The
application of the strict indirect optimization

- method of the Pontryagin's maximum principle

type for branching processes in combination
with the methods of the solution continuation
and selection of local extremals, as is the case
in the ASTER complex, guarantees the relevant
automatic (without the investigator's interfer-
ence) modification of the optimal control law
structure, including that of the bifurcation type,
resulted from the consideration for new factors,
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if this improves the STS effectiveness. Similar
capabilities are demonstrated by examples of
solving the optimal injection problem for exist-
ing multi-stage STS with due regard for the
limitation on fall zones for spent components
(boosters and a nose cover).

It is shown the capability of:

- using unified alienation zones intended for
vehicle injections into orbits in a wide range of
orbit inclinations;

- varying the spent component fall point within
the Earth surface region having the diameter
comparable with the distance of the nominal
fall point from the launch site;

- dropping STS components, used on different
flight portions, at one and the same point, etc.

Of fundamental importance is the fact that
when the optimal control laws are used, includ-
ing nontraditional ones, the above-outlined ca-
pabilities can be realized with minimal losses
of the injected mass.

10

. D.E.Lawden.
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