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Abstract

Engineering simulators are used in the design and
evaluation of aircraft systems. This paper describes the
design of an engineering simulator based on commercial
off-the-shelf equipment. An array of PCs, coupled via
Ethernet cards, is used to sustain an update rate of 50 Hz
for all the primary elements of a real-time simulation.

The paper describes the organisation of the simulator
software to provide a rapid prototyping environment for
the design of flight control laws, aircraft displays and
avionics systems. The aircraft displays are based on
standard SVGA cards and the methods to provide
realistic aircraft displays for primary flight instruments,
engine instruments and navigation displays are outlined.
Data is recorded and displayed at 50 frames per second,
generating 1.5 M bytes of data per minute which can be
analysed on-line or saved for subsequent off-line analysis.
The paper describes a method to acquire and record
essential flight data using the XMS memory of a PC.

The papers includes examples of real-time aircraft
displays and aircraft responses for several aircraft to
illustrate the effectiveness of this approach to engineering
simulation. The paper concludes with a summary of the
overall performance of the simulator in meeting an
overall real-time iteration rate of 50 Hz for flight models
and aircraft displays.

Introduction

Flight simulation has been used in pilot training for civil
and military organisations for over twenty years. In this
role, emphasis is given to simulator fidelity’" to ensure a
positive transfer of training from the simulator to the
aircraft. In the last fifteen years, there have been

considerable advances in avionics for both civil and -

military aircraft including the integration of high speed
databuses, the provision of EFIS displays on the flight
deck, the introduction of new navigation systems (e.g.
GPS) and the development of fly-by-wire flight control
systems.

Flight testing for a new aircraft is both time consuming
and expensive. While the purpose of flight testing is to
establish aircraft performance and stability throughout
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the flight envelope, an additional role of flight testing is
the evaluation and certification of aircraft systems and
avionics. Data from flight tests is used to confirm the
effectiveness of aircraft systems in meeting a functional
specification and to assess the effect of these systems on
pilot performance.

It is clear that a considerable part of the design and
evaluation of avionics equipment can be undertaken in a
flight simulator'®, provided that the fidelity of the
simulator is appropriate to the evaluation task and that
data can be derived from simulator based trials to
evaluate criteria required for the wvalidation and
certification of aircraft systems. In this role, airborne
flight trials are used to validate the results of simulation
studies.

While engineering simulators may contain software and
systems which are also found in full mission simulators,
the main requirement is to provide a rapid prototyping
environment to be able to configure the simulator (and
the simulator software) in a simple and straightforward
manner appropriate to a wide range of tasks. A second
requirement is to reduce the cost of simulation equipment
in an engineering flight simutator.

Up to the last few years, the computers used in real-time
flight simulation were restricted to high performance
mini computers and special-purpose cards. However, the
performance of PC systems in recent years has increased
to a level where commercial off-the-shelf PCs can be used
to provide the computing performance required for real-
time flight simulation. In addition, the low cost of
peripheral equipment for the PC can lead to a cost
effective solution in real-time simulation, using
commercial off-the-shelf hardware.

There are two areas where PC systems can be exploited in
engineering simulation. Firstly, PC graphics performance
may be sufficient for real-time aircraft displays. In an
engineering simulator, the aircraft displays only require
sufficient functionality and fidelity to enable a pilot to
undertake flight test procedures. Secondly, processing
capacity need not be restricted to a single processor. By
connecting PCs via Ethernet, data can be shared and
transferred between processors at data rates which sustain
real-time iteration rates in excess of 50 Hz.

2{st ICAS Congress
13-18 September 1998
Melbourne, Australia

ICAS -98-1,1,2




Copyright © 1998, by the International Council of the Aeronautical Sciences (ICAS)
and the American Institute of Aeronautics and Astronautics, Inc.

While the raw processing afforded by a distributed array
of PCs may provide the basis for a real-time engineering
simulator, consideration must also be given to the design
environment to allow an engineer to configure the
simulator for specific tasks. This requirement is
influenced by the provision of a modular architecture of
software modules which can be configured in a
straightforward manner. These requirements extend to
flight modelling, aircraft displays, navigation systems,
the integration of avionics sensors and equipment and
also to flight data recording from simulator trials.

This paper describes an engineering flight simulator
developed in the College of Aeronautics at Cranfield
University, where it has been used to support teaching
and research at postgraduate level in avionics, flight
control system design and human factors studies. The aim
of this programme is to exploit standard PC equipment by
means of an integrated set of software modules which can
be rapidly configured to provide a flight test environment.

System Organisation

The primary elements of a flight simulator are shown in
Figure 1. The flight model provides the focal point of the
simulation, responding to pilot inputs and instructor
commands and generating flight data for the other
simulator modules. For an engineering simulator, the
motion platform is usually omitted. Previously, there has
been a natural partitioning of systems such that the
dynamic real-time models for aircraft dynamics, engine
models, navigation systems, avionics and aircraft displays
are combined in one system; the visual system is provided
as a specific item and the instructor station is a separate
computer system and user interface™.

In addition to the software modules, databases are
provided for the flight model data, for the navigation
systems and also for the visual system. These provide
aircraft specific data for modelling the airframe and
engine dynamics, details of navigation aids and airfields
and also topological terrain data needed for the visual
system. Considerable care is required in the formulation
of these databases and in the selection of axes systems
such that the dynamic motion, navigation displays and
the visual system are correctly aligned.

For a real-time engineering simulator, all the simulator

modules are slaved to a common frame rate or iteration
rate, typically 50 Hz. This implies that all the code within
each module is executed within the period of a single
frame (with a small margin to avoid exceeding the frame
rate) and that all data transfers are completed within this
frame. In practice, data used in a simulator may be
acquired and processed by one module and then passed to
other modules. Considerable care is needed to ensure that
latencies of data transfers through the simulator are kept

to a minimum. For example, data from an inceptor is
used in the computation of the aircraft motion and the
aircraft position and attitude and then passed to the visual
system which may in turn, take several frames to compute
the displayed image.

Software modules in an engineering simulator can be

organised at three levels:

o at the lowest level, the modules are represented as
procedures; data is passed between modules either in
the parameter list of a procedure or via an area of
shared (or common) memory.

e at a higher level, software modules can be developed
for specific applications. The visibility of procedures
and data structures can be defined to provide
communication between modules and to restrict
access to specific code or data. Data sharing between
modules can be provided by parameter passing or
shared memory protocols, including semaphore
mechanisms. Generally, these modules are contained
within a single processor.

e at the highest level, modules can be bound to a
processor; access to code and data structures is via
message passing between processors®,

In the past, modules were allocated to processors subject
to the constraints of code size and storage for data
structures. With the reduction in the cost of memory
devices, the main criteria for binding processes to
processors is now strictly data throughput and the need to
meet the overall processing requirements.

For each module, it is possible to predict the worst case
processing needed for computations required in any
frame. However, there are two timing considerations
which influence the overall processing throughput.
Firstly, the processor speed (particularly to execute
floating-point arithmetic operations) and the size of code
will determine the upper bound of the processing rate.
Secondly, the amount of data transferred between
modules and the overhead of any transfer mechanisms
will also influence the overall processing. For example,
the overhead to access shared data in a sequential
processor may be negligible whereas data provided once
per frame from another processor may not be available
until a few milliseconds into a frame.

Ethernet

Ethernet has become an accepted standard for local area
communications over the last five years and, as a
consequence, a range of low-cost network cards have
been produced for PCs and workstations. In addition to
this hardware development, communications protocols
have been devised and approved for use with Ethernet
cards. However, the majority of applications for local area
networks are not constrained by real-time considerations,
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rather, emphasis is given to data integrity. While the data
integrity of Ethernet is excellent, protocols are used to
guarantee data transfers, including re-try mechanisms.

Ethernet is based on packet transfers. In other words, the
benefits of Ethernet are realised by transmitting blocks of
data rather than individual bytes of data. The minimum
packet size is 46 bytes and the maximum packet size is
1500 bytes, per transfer. The data is encoded and
transmitted serially using coaxial cable which provides a
reasonable level of noise immunity. Although Ethernet
affords a data transfer rate of 10M bits per second, this is
only the data rate over a cable between adjacent
terminals. In practice, the actual data rate between
terminals (or nodes) is considerably less than this for a
number of reasons: .
e contention for the network - transfers may be delayed
until the bus is available
» time to formulate the packet for transfer
e time to receive and copy the packet and also to copy
the packet.

The requirements of a local area network are quite
different from real-time simulation: delays of several
seconds can be tolerated, data integrity can be improved
by re-transmitting corrupted data and the network bus
ioading will vary according to the number of users and
the volume of traffic. This first point is fundamental to
Ethernet. To transmit packets, it is necessary to check the
result of the transmission. As Ethernet is based on
collision sensing, simultaneous transfers over the bus are
detected and data is re-transmitted after a short period.
This re-try mechanism is provided at the card level and
the applications software is isolated both from the
transfer protocol and the hardware bus interface.

This arrangement is totally unsuited to a distributed

approach to real-time flight simulation where data must

be guaranteed to be transferred within a very short period

during every frame. Nevertheless, Ethernet does offer

several advantages for real-time simulation:

e the data rate of 10M bits per second allows large

~ blocks of data to be transferred between computers

¢ the cost of an Ethernet card is less than $50

e higher performance Ethernet cards are available
providing 100M bits per second data rates

« the bus integrity is very high (the bit error is of the
order 107 bits per second)

« public domain Ethernet packet drivers are available.

The major problem is that bus transfers must be
deterministic in real-time applications. Although re-try
mechanisms can sustain very high throughput on lightly
loaded networks, it is difficult to ensure worst-case
transfer rates under all conditions. However, this problem
is simplified for flight simulation because the sequence of

transfers is known and typically, there are only a few
hundred variables to transfer during any frame.

The problem of bus contention is overcome by ensuring
that only one terminal transmits at any time. This
arrangement is similar to avionics buses such as Mil-Std
1553B, where the bus is multiplexed by the terminals and
bus ownership is controlled by a dedicated bus controller.
This is not strictly necessary in flight simulation, as the
sequence of bus transfers is likely to be repeated in every
frame. The completion of individual transfers can be used
to signal the availability of the bus for the next transfer.
This scheme is aided by the provision of a ‘promiscuous’
mode in Ethernet, whereby all terminals are able to
monitor all bus transfers, affording a broadcast mode.

As each packet contains not only the data required for a
bus transfer, but also the node addresses of the
transmitter and receiver, it is straightforward to monitor
the sequence of transfers and to follow a predetermined
sequence of bus transfers. This assumes a set of co-
operating processes. In a dedicated engineering
simulator, where the processors and processes arc
simulator modules, it is reasonable to assume that all
modules fulfil an agreed and synchronous set of transfers.

In performance tests, back-to-back transfers of a
maximum block length resulted in an overall data
throughput of 2.4M bits per second which includes
formation of the packet at the transmitter, checking and
re-transmission of the packet at the receiver. These tests
were performed using two 33 MHz 486 PC< and a 16-bit
non-optimising compiler with run-time checks enabled.

The applications software for the simulator interfaces to a
low-level packet driver obtained from the Crynwr public
domain packet driver collection which implements the
PC/TCP protocols®®, which are supported by the majority
of Ethernet card vendors. These low-level packet drivers
provide a common set of access primitives at the Medium
Access Control (MAC) layerm.

The packet driver is invoked via a software interrupt to
establish a link between an applications program and the
packet driver and also to write packets. Received packets
are copied to a user defined region which is also
established by means of a software interrupt. In the case

_ of real-time simulation, it is assumed that packets will be

transmitted and received in sequence at the start of each
frame. Consequently, it is straightforward to sequence the
writing and reading of packets.

Typically, a 500 byte packet is transferred in
approximately 2 ms. This enables the flight model to
broadcast essential flight data to other systems, in the
form of a packet containing over 100 floating-point
values, at the start of every frame. Packets arriving from
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other processors are queued as background tasks and
extracted as required during the frame. Initially, each
processor interrogates a common file containing the list
of transfers per frame and constructs the list .of packet
transfers to be executed in a pre-defined order every
frame. Once the initial links are established with the
packet driver, calls are invoked to read or write packets,
with the source and destination Ethernet addresses
appended to the data packet for each transfer.

The packet format is defined as a Modula-2 data structure
and is used by all modules; it specifies the location of
variables in the packet, their size and type. All modules
use the same packet format (and conventions for units)
and it is straightforward to alter this packet definition for
all modules and simply recompile the simulator modules,
avoiding any explicit re-ordering of the packet contents.

In practice, the use of a standard Ethernet packet format

offers a number of advantages:

e it provides a local interchange ‘standard’ between
software modules, independent of the platform or
programming language - modules simply read or
write packets in the prescribed format

o partitioning of modules or re-allocation of modules to
processors can be achieved by adding a few extra
Ethernet transfers

o the visibility of a module can be defined at the
processor level so that shared data is only available
via Ethernet transfers and private code or data, local
to a processor, is hidden from other processors.

Flight Modelling

Flight modelling underpins an engineering flight
simulator. The aircraft dynamics are computed at a
sufficiently fast iteration rate that the aircraft motion
computed by the simulation is continuous; in particular,
the pilot in-the-loop cannot discern any discontinuities in
the solution of the equations of motion. In practice, this

requirement means that the equations of motion for the

airframe aerodynamics and the engines must be solved at
a minimum iteration rate of 50 Hz.

The computing tasks to be performed in the solution of

the equations of motion are four-fold:

¢ derivation of the aerodynamic and propulsive forces
and moments on the aircraft

e computation of the linear and angular accelerations
on the aircraft

s computation of the linear and angular velocities of
the aircraft, in the appropriate frame of reference

e computation of the aircraft position and attitude
relative to the visual and navigation databases

The aerodynamic forces and moments are defined in
terms of the aerodynamic and engine data for the

aircraft®. Typically, aerodynamic data is available in the
form of data tables or graphs for the aerodynamic
derivatives®. Often, these variables are defined in terms
of two or three variables, for example, Cy, (the pitching
moment with respect to the angle of attack) is typically
defined as a function of the angle of attack (o) and also
includes the effects of mach number, flap setting and
undercarriage position. It is possible to pre-process the
data to simplify table look-up functions or polynomial fits
to the data, however the computation of each
aerodynamic derivative requires table access and
interpolation®, which may prove time consuming.

As a processor is bounded by its clock speed, considerable
attention is given to the organisation of acrodynamic data
and the real-time computation of the forces and moments.
This constraint also applies to the numerical integration
of the accelerations to derive velocities and the
subsequent integration of aircraft velocities to derive
position and attitude. In practice, first order integration
methods (forward Euler) provide sufficient accuracy and
stability in the solution of the equations of motion,
although care is needed to ensure this approximation does
not introduce instability into specific modes of motion.

The majority of the acrodynamic data is defined in terms
the aircraft stability axes. For engine data, forces and
moments are normally computed with respect to the body
axes. Figure 2 shows the organisation of the equations of
motion used in real-time simulation. In addition to the
computation of the aerodynamic derivatives and the
integration of variables, aircraft data is computed in the
most appropriate axes and then transformed for
computation in other axes!). The computation
constraints of real-time computing also impact on these
axes transformations. The computation of the Euler
parameters, the formulation of the Direction Cosine
Matrix needed to transform between body axes and the
earth frame also require arithmetic operations from the
limited real-time budget available per frame.

Weather data derived from an atmospheric model, is
defined in terms of the Euler axes. In the solution of the
navigation equations, it is possible to transform aircraft
motion from a ‘flat earth' or an Euler co-ordinate
framework to spherical co-ordinates; it is straightforward
to compute relative bearing and distances using spherical

. co-ordinates. More commonly, as the tasks undertaken in

an engineering simulator are unlikely to include flight
distances exceeding several hundred miles, the navigation
system is organised as a set of flat earth 'tiles’. As the
aircraft manoeuvres over the surface of the earth, the
nearest airfield is selected from the navigation database
and aircraft motion is transformed to the runway axis
system. A similar transformation is applied to the co-
ordinate system of the visual database.
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In most simulators, the pilot inputs are acquired as
analogue data from the control column, rudder pedals,
brakes, flaps, undercarriage lever, engine levers and
associated knobs, levers and cockpit switches. For a PC
engineering flight simulator, an industrial /O card was
selected, providing 32 analogue and 32 digital channels
and 12-bit bit analogue to digital conversion (ADC) with
an overall sampling rate of 1600 Hz. The card is
programmed to interrupt on completion of each sample.
The converted value is stored in a shared buffer and
accessed by the flight model software as required. In this
mode, autonomous sampling is provided by responding to
an interrupt as a background task. After each interrupt,
the converted value is stored and the ADC card is set to
convert an analogue value for the next of the 32 channels.

There is an overhead associated with each interrupt. The
interrupt handler is written in Modula-2. For each
interrupt, all the machine registers are saved, the
interrupt is processed, the converted value is written to a
shared region, the I/O card is reset for the next
conversion, the registers are restored and the processor
returns from the interrupt, to resume the main task. If the
overhead for each interrupt is 50 ps, say, then 1.6 ms is
lost per frame on interrupt handling. There is a clear
trade-off between latency (the delay in converting an
analogue input and using it in the equations of motion)
and the interrupt processing overhead. However, this
scheme does ensure that there are no delays in waiting for
the conversion of analogue data and that an acceptable
proportion of the frame is dedicated to data acquisition.

Aircraft Displays

In flight training simulators, aircraft displays are based
on replication of the flight deck environment and often
use simulated electro-mechanical instruments. The
requirement for an engineering simulator is different; the
displays should be functionally correct and support an
update rate which is matched to the flight model iteration
rate. However, the aircraft displays do not need to have a
high level of resemblance to specific displays and, for
most applications, it is appropriate to emulate aircraft
displays by means of real-time computer graphics.

For the PC, although a number of high performance
graphics cards are available, it is possible to exploit
features of the SVGA for the generation of aircraft

displays which are inappropriate to other applications of

real-time graphics. An SVGA graphics card affords:
frame store management for the video access logic, a
range of display resolutions and colours, colour palette
selection and video refresh rates in excess of 70 Hz to
avoid display flicker. However, there is no hardware
support for vector generation, character generation, in-
filling of regions, graphics transformations, hidden
surface elimination or the clipping of graphical objects.

For aircraft displays, it is necessary to animate the display
at 50 Hz by re-drawing objects which include vectors
(lines), characters and in-filled regions. In addition, there
is a requirement to provide real-time in-fill for
instruments such as an attitude indicator and also hidden
surface elimination, for example, where an instrument
failure flag may drop and obscure a pointer.

A standard SVGA display with a resolution of 640:480
pixels, has a pixel refresh rate of the order 15 million
pixels per second at 50 Hz. However, pixel rendering can
only be achieved by the processor writing individual
pixels into the SVGA memory. In practice, the maximum
rendering rate that can be achieved with a standard
SVGA display is approximately 2 million pixels per
second. This problem is ameliorated by only modifying
the display when there is a change to an aircraft display
during one frame. For most aircraft instruments, the
major part of the instrument is static so that only the
pointers or symbols are updated, reducing the overall
rendering rate to a manageable level.

A specific set of graphics primitives were written to
support vector generation or character generation. For
vector generation, straight line segments are generated by
means of Bresenham's algorithm®®. As each pixel of the
approximated straight line is computed, it is written to
the frame store. Therefore, the limiting speed of vector
generation is influenced by the processor performance
and the bus interface between the processor and the video
memory on the SVGA graphics card.

Boeing 747-200 and Boeing 747-400 displays are shown
in Figures 4 and 5 respectively. Figure 6 illustrates the
update rate for the worst case situation for the Boeing
747-200 display. The drawing rates for a 33 MHz 486 are
shown in Figure 7, giving vector generation rates between
1 and 2ps per pixel. If the average length of lines drawn
for an aircraft display is 100 pixels, then only 100 lines
can be drawn per frame at 50 Hz, allowing for each line
to be erased before it is drawn in a new position. A
margin is also required to ensure that the frame time is
never exceeded. The graph in Figure 8 shows the
distribution of vector lengths for the first 1000 updates of
the Boeing 747-200 display. It is clear that the majority of
vectors are less than 30 pixels in length giving an average
rendering rate of 1.5 ps per pixel.

For character generation, the font for a specific character
set is stored and accessed on a bit per pixel basis. There is
no requirement to scale the fonts and for the majority of
cases, only the visible part of each character is copied.
However, a font of character of 16:8 pixels requires
approximately 50 us to render each character in the worst
case for a 33 MHz 486. Although there is no arithmetic
computation for character generation, time is taken in
accessing the appropriate bits of each font character.
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In addition to the requirements to render vectors and
characters, the attitude indicator imposes considerable
processing overhead from the time required to render the
blue and brown in-filled regions. Handley and Allerton®®
have shown that the amount of rendering can be reduced
significantly by computing the difference between
successive frames and in-filling the respective regions as
a series of triangles.

One further problem, which is specific to real-time
aircraft displays, is that aircraft instruments are 'layered'
in the sense that objects of one colour may overlay other
objects in the display. For example, the pointer of an
altimeter passes over the barometric pressure setting
digital read out. For several instruments, there may be
three or four levels of object occlusion. However, there is
only a limited set of primary colours used in aircraft
displays and the priorities of these objects are known. A
further problem is that re-drawing objects may interfere
with other objects in a display. For example, to reposition
a pointer, it is necessary to erase the pointer and re~draw
it at a new position. This operation must be performed
without erasing underlying objects.

In the SVGA mode, each pixel of the display is
represented by a single byte of eight bits. This byte is
accessed by the video generation logic and is treated as an
eight bit address which maps to 256 possible colours
defined in the colour palette. However, the mapping (or
encoding) of frame store pixels to a specific colour can be
defined by setting the contents of the colour palette
registers. Each specific code of the 256 possible values is
defined in terms of the red, green and blue colour
content, giving a selection of 2'% possible colours.

More importantly, this scheme allows the designer to
define the mapping between logical colours and physical
colours, simply by appropriate initialisation of the colour
palette. It is possible to define 8 primary colour layers and
allocate these layers to specific bits in the frame store
bytes. For example, green might be allocated to the third
bit. It is then possible to draw and erase in green by
setting and clearing the third bit of each byte representing
the pixels of a vector or character. This operation can be
performed during vector generation or character
generation by means of simple Boolean logic operations
in writing to the frame store.

One further benefit of this approach is that it is
straightforward to define the resultant colour for
overlapping regions, for example, where a pixel is set to
green for one object but the same pixel is set to red, say,
for another object. The resultant colour (which
corresponds to the logical addition of two colours) can be
defined to establish the priority of red over green or vice-
versa. In addition, this scheme provides extra colours, for
example, if red and green never overlap, a third colour,

purple say, could be allocated to this bit pattern. Drawing
and erasing in purple would then set or clear both bits
represented by this colour,

A limited amount of clipping is required in aircraft
displays. For example, the pitch lines of an attitude
indicator are clipped to the circular bezel of the display or
the rolling digits of an engine display are clipped to the
window over the digits. While it is possible to clip vectors
and characters to irregular regions, this organisation of
colour planes lends itself to clipping by overlaying
irregular objects over a regular clipping region. For
example, the attitude indicator shown in Figure 4 has
regions of blue and brown and also white pitch lines
clipped to the circular bezel. Clipping to the bezel is
achieved by clipping to a rectangular region bounding the
blue and brown in-filled regions and the pitch lines and
overlaying the grey bezel region such that brown, blue or
white lines under the grey region also map to grey. The
characters in the airspeed window of the Boeing 747-400
display in Figure 5 are also clipped by this method.

Although SVGA does not strictly support real-time
graphics, the features afforded by the graphics
organisation of SVGA allow many of the attributes of
aircraft displays to be implemented in a straightforward
and logical manner. The software developed for the
engineering flight simulator has adopted the VESA®?
graphics protocols to provide a high degree of portability
for different SVGA cards. The low-level graphics
primitives needed for vector generation and character
generation were implemented in K086 assembler The
primitives for colour sclection, font access and
initialisation of the colour palette were written in
Modula-2. For either the 640:480 or the 1024:768 SVGA
modes, each pixel is represented by a single byte and the
VESA interface provides the necessary control to access
the SVGA display pages. ’

Flight-test Environment

The major purpose of am engineering simulator is to
evaluate systems or algorithms, typically for pilot in-the-
loop studies. This evaluation phase requires the capture of
flight data during flight test experiments and also the
recording and display of flight test data. One option is to
record only the flight data specific to the test. A more
flexible option is to record all the flight data, also
allowing data analysis to be undertaken off-line.

During each frame, the flight model software generates a
512 byte packet which contains aerodynamic data, engine
data, navigation data and systems data. At this rate, 1.5M
bytes of data is generated per minute. For the PC running
under DOS, although 640K bytes of memory is allocated
for code and data storage, the remainder of the PC
memory can be accessed-via the Extended Memory
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System (XMS) functions. This enables programs to
exploit the large memory space available in the current
generation of PCs. The XMS functions provide dynamic
allocation of memory on a block basis. In addition, XMS
functions are accessed via a handle provided by DOS
rather than DOS interrupts, which enables XMS
functions to be invoked in an interrupt service routine. By
aligning the XMS block size with the Ethernet packet
size, it is possible to copy Ethernet packets directly to the
XMS memory. ,

As Ethernet packets are received, they are copied to the
next available block in XMS memory by the Ethernet
interrupt handler as a raw Ethernet packet, ie. no
processing or reformatting is performed on the packet.
This approach offers the additional benefit that the disk
files can be accessed off-line to emulate flight trials data.

In the flight test environment, flight data packets are
available in three forms: the current packet is available
during the current frame, recent packets are available by
reading the appropriate XMS blocks and thirdly, in order
to avoid filling the XMS memory, blocks can be spooled
from the XMS region to disk as a background task. This
method of flight data recording, using standard PC
technology, provides a virtual memory flight data
recording capability. A specific frame is accessed from
the Ethernet buffer, the XMS memory or disk. No data
packets are lost as each packet is written to XMS memory
once per frame when the foreground task is interrupted to
process each arriving Ethernet packet.

Results

An engineering flight simulator has been developed using
three standard 486 PCs to provide reai-time simulation
with an iteration rate of 50 Hz, giving a 20 ms frame rate
and a worst-case margin of 5 ms per frame. With the
exception of a few graphics primitives, the software was
written in Stony Brook 16-bit Modula-2 running under
the DOS operating system. The non optimising version of
the compiler was used, with all run-time checks enabled.

Figure 3 shows the overall organisation of the simulator.
Each PC is a 66 MHz 486 with a standard NE-2000
compatible Ethernet card. A signal conditioning card was
interfaced to an Advantech PCL-812 I/O card. The only

non-proprietary card is a programmable sound generation .

card which replicates a range of aircraft sounds including
engines, slipstream, gear rumble, warnings and idents
etc.

A number of flight models have been developed for civil
and military aircraft including piston-engine aircraft,
turbo-prop aircraft and jet aircraft. Full six degree-of-
freedom flight models have been developed and fully
integrated with a proprietary navigation database and a

commercial visual system. The flight models have been
validated by flight testing by qualified test pilots and also
by comparison with aircraft flight test data.

Figure 9 shows the short period response for a Handley
Page Jetstream-100 with Aztazou turbo-prop engines to a
manual elevator input of 10 degrees for 1 second. Figure
10 shows the long period phugoid response for a Boeing
747-200 with Pratt and Whitney JT9D engines and
Figure 11 shows the Dutch roll response for the same
aircraft to a manual rudder input of 30 degrees for 3
seconds (yaw damper engaged). These results were
generated directly by the flight test recording module.

One specific application of the engineering simulator has
been the design and development of flight control
systems"®. The organisation of the flight model software
allows a new model to be developed in a few days. The
equations of motion are common to alf flight models and
the aerodynamic data, which is defined in a consistent
form, has to be implemented using table look-up and
interpolation from aerodynamic tables. As an example of
the efficiency of this approach, Gautrey"'® implemented a
full flight model of the Airbus A300-600R in one day and
coded an auto-throttle and a C* flight control law in two
days. Flight test data was obtained from pilot in-the-loop
studies within three days of obtaining the simulator data
package for the aircraft.

A range of real-time graphics library primitives have
been developed to provide the instrumentation in both
standard cockpit configurations and also EFIS displays.
The displays cover primary flight displays, navigation
displays and engine instruments. By careful exploitation
of the SVGA graphics architecture, it is possible to
provide displays with sufficient resolution and an update
rate of 50 Hz. These library primitives enable displays to
be configured in a few hours for specific aircraft. In
addition, the modular structure of the displays software
allows each display to be tested off-line in terms of
functionality and also worst-case real-time performance,
prior to installation in the simulator.

The overall timing for the Boeing 747-200 flight model,
using the instrument display shown in Figure 4, is given
in Figure 6. This confirms that the flight model and
engine model occupies less than 1 ms of each frame.
Generally, the instrument displays occupy 3 ms to 5 ms of
each frame. The occasional excursions to an overall
processing time of 14 ms is caused by the compass cards
of the HSI and the RMI instruments. The worst-case
update rate for this display, using a 66 MHz Pentium
processor with an ATI Mach32 SVGA card, was recorded
at 140 Hz.
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Conclusions

This paper has shown that it is possible to implement a
real-time flight simulator, based on several standard PCs
coupled with Ethernet and to obtain the same level of
fidelity as simulators developed using high performance
mini-computers. The simulator has an update rate in
excess of 50 Hz using commercial off-the-shelf PC
equipment.

SVGA provides sufficient resolution to implement real-
time displays of aircraft instrument displays including
EFIS displays. In order to achieve this performance, a
real-time graphics library was developed which is
optimised for SVGA. In addition, the problems of
updating displays, colour plane organisation and colour
prioritisation are solved by mapping the logical colour
plane organisation using the SVGA colour palette.

The PC, combined with a low-level Ethernet interface,
also provides a real-time flight test environment to
acquire simulator data from trials at rates up to 1.5M
bytes per minute. Data is streamed to XMS memory and
copied to disk without loss of data providing a high
volume and high throughput data recordmg capability
with standard PC equipment.

The engineering simulator has been validated by a

number of flight trials and performance tests to confirm

the overall processing. All this has been achieved using
software written in Modula-2 for the PC running under

DQS. Further improvements in real-time performance

can be achieved in several ways:

e the use of Ethernet allows the system to be
partitioned to balance the processor loading,
allocating modules to additional processors without a
major reorganisation of the simulator software

e at present, the simulator is based on standard 66
MHz PCs. A factor of at least five would be achieved
by moving to Pentium processors

e  all the Modula-2 software has been deveioped using a
non-optimising 16-bit compiler with run-time checks
invoked. A further factor of two to three is possible
by using an optimising compiler and suppressing
run-time checks.

The simulator provides the basis of a real-time

engineering  simulator using an | off-the-shelf PC

implementation with Ethernet and SVGA displays. In
this form, it is straightforward to develop new models and
to evaluate flight control systems, avionics, displays and
navigation laws by means of the high performance data
recording facility. The modular structure of the simulator
allows the software to be used directly for real-time
applications and to be re-used for off-line system
development.
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