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Abstract

An approach for a systematic identification of aircraft
non-linear dynamics by means of a Volterra functional
series is presented in this paper. Volterra functional series
is an intuitively satisfying representation for continuous
non-linear time-invariant dynamic systems. The rigorous
mathematical formulation of Volterra functional series
have motivated a variety of different functional
representations in order to extend the range of systems
modelling, as well as to overcome the difficulties in
determining the Volterra kemels. Recently, with the
advances in the theory of computational neural networks,
it has been developed a particular network architecture
that is shown to be equivalent to a discrete Volterra series.
This methodology facilitates, in principle, the kernel
calculation of any order. The neural network approach, to
achieve a Volterra series, is applied for the case of an
aircraft non-linear longitudinal dynamics. Results have
shown that the approach performs well and provides
suitable approximation of the non-linear behaviour of
aircraft longitudinal dynamics. The easy implementation
of this kernel identification methodology also contributes
for further applications in aircraft non-linear analysis and
control design.

Introduction

Non-linear dynamic responses of aircraft in flight present
major modelling difficulties. As a dynamic system, an
aircraft is a complex aggregate of elastic bodies allowing
relative motion and subjected to a complicated system of
external non-linear loads and inertial effects. A complete
model that can calculate all these effects is still not
practical for industrial applications. Indeed, much of the
aircraft modelling schemes serving either research or
industry, present many simplifications and linearisations.
These limitations inhibit the design and analysis of
aircraft dynamic behaviour that could account for non-
linearities such as severe manoeuvres at higher angles of
attack or at transonic regimes.

An alternative to overcome such modelling problems is to
use techniques from non-linear systems identification
theory. Aircraft dynamics identification has reached today
a high level of development, mainly due to advanced
measurement and data processing techniques'”. It has
been observed that the understanding of aerodynamic
phenomena and their modelling remain a great challenge.
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Approaches for aircraft dynamics identification have
commonly treated the aerodynamic loading using linear
parameter methods®. Therefore, the role of system
identification methods is still decisive to characterise
aircraft non-linear dynamics. This situation motivates the
research for new approaches to provide systematic ways
of identifying aircraft non-linear dynamic behaviour.

Identification strategies are used to establish the
properties of a dynamic system by the measurement of its
input and output time histories. While the use of non-
linear identification strategies for general dynamic
systems has been of great interest for many researches,
only few preliminary studies of non-linear aircraft flight
dynamics identification have appeared in the literature(®.
One of the reasons for that is the inherent feature of
aircraft  responses affected by the aerodynamic
environment that provides unique transient response
behaviour. This limits the application of certain non-linear
identification techniques.

Mathematical techniques in non-linear identification, such
as the Volterra functional theory® of non-linear systems,
furnishes a rigorous formulation. Supported by this
mathematical formality, Tobak and Schiff¥ have
proposed the indicial response functional to compose
aerodynamic response histories. Although, the functional
theory allows non-linear representation of the
aerodynamic loads acting on aircraft, the complexity of its
formulation limits practical use. :

Volterra® has also shown that expansions of the
definition of the Taylor series for a function can be
generalised to functionals. The resulting functional series
is the so-called, Volterra series. Volterra® has also
proved that any continuous, causal, time-invariant non-
linear system can be modelled as an infinite sum of multi-
dimensional convolution integrals of increasing order;
that is, the Volterra series itself. The great drawback of
Volterra series, however, is the calculation of its
kernels®®), Attempts to develop a systematic approach for
identification have not provided -
substantial progress so far in the field of non-linear
identification.

Related to expansions of the Volterra type of functional
series, other methodologies have been developed®. It is
the case of the Wiener methods®” that provide potential
identification schemes for non-linear dynamic systems.
One of the Wiener methods is based on the expansion of a
non-linear finctional into a series of mutually
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orthonormal polynomial functionals called G-functionals.
Although the Wiener methods provide a systematic
approach to non-linear identification problems, the
excessive number of coefficients required to identify the
functional series, even for lower-order non-linear systems,
makes this technique impractical and difficult to apply.

Other techniques for non-linear dynamic systems
identification are based on block-oriented models®®,
These approaches represent systems by means of cascade
structures of combinations of linear dynamic and non-
linear static subsystems. The Hammerstein model®® is a
block-oriented representation of non-linear systems, in
which a static non-linearity is followed by a linear
dynamic subsystem. Similarly, system models that consist
of a cascade of a linear dynamic subsystem, a static non-
linearity, and another linear dynamic subsystem, or the
LNL systems"”, furnish another possible approach in
non-linear identification by combining the ideas from
Wiener and Hammerstein cascade models.

These techniques have been developed strictly for random
processes, in particular for white Gaussian inputs, in order
to systematically obtain the parameters of the identified
models for the associated class of non-linear systems. An
important drawback associated to the aforementioned
methods is the difficulty in determining the large number
of identification parameters. These features suggest that
the application of block-oriented modelling by the current
methods for aircraft non-linear dynamics is questionable.

Recently, studies using artificial neural networks"? for
identification have shown great potential for non-linear
systems modelling, either on its own or assisting other
types of approaches. Neural networks are information
processors based on the concepts derived from neuro-
biology. They are composed of processing units arranged
into layers and connected between them. The application
of neural network to identify Volterra finctional series
has been proposed by Wray and Green’?. It has been
proved that particular network architecture can be
equivalent to a Volterra series representation of a dynamic
system. Moreover, the kernels of any order can also be
extracted from the network parameters.

The aim of this paper is to present an investigation on a
systematic identification approach for Volterra functional
series representations of aircraft non-linear dynamics. The
identification procedure is carried out by means of a
supervised network training scheme using standard back-
propagation algorithm". The approach is used to identify
an aircraft non-linear longitudinal dynamics repre-
sentation from data obtained in simulations of the aircraft
longitudinal equations of motion accounting for non-
linear coupling effects and linearised aerodynamic
reactions. The training pattern comprises motion-induced
horizontal velocity response history to variations of the
aircraft elevator angle. Generalisation tests and the
extraction of the first two Volterra kernels are also
presented. ;
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Volterra Series

Volterra series™ are functional forms developed as a
generalisation of the Taylor series expansion for a
function. The basic premise of the Volterra functional
series approach is that an exact description for a
continuous non-linear, physically realisable (or causal),
time-invariant system is provided by an infinite series of
multi-dimensional convolution integrals of increasing
order expressed as,

YO =ho+ [(eyute o) +
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where y(1) is the system response, u(¥) is the input to the
system, and A, is the n®-order Volterra kernel.

The Volterra kernels are functions of the variables z and
each one represents a measurement of the systems non-
linearity. Therefore, as requirement for an adequate
Volterra series representation for a non-linear system,
accurate calculation of the kernels is necessary.

The zero™-order Volterra kernel, Ay, is a constant equal to
the zero-input response of the system. The first-order
Volterra kernel represents the linear response of the
system to a unit impulse input, while the higher-order
kernels are the non-linear responses of the system to
multiple (with respect to the kernel order) unit impulse
inputs. The higher-order kernels are measures of the non-
linearity, or the relative influence of a previous input on
the current response, that characterises the temporal effect
to the non-linear system.

For causal systems, if any of the z,,...,z, is less then zero,
then the kernel £,(7,,..., ;) is zero, and the lower limits of
the integrals in Equation (1) can be set equal to zero.
Moreover, with no loss of generality, it is possible to
assure that each kemel h,(7,...,7) in Equation (1) is
symmetric with respect to any permutation of 7;,..., 7, .

It is convenient to present the Volterra series for causal,
finite memory, 7, time-invariant, and discrete time
systems, in order to relate the formulation to the
subsequent numerical kernel calculation; that is,

T
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Various methods to assess the Volterra kernels have been
developed, as it can be seen in the review paper of
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Billings® or in the work of Schetzen®. Some of the
discussed and reviewed approaches in the aforementioned
research works are: (i) kernel estimation of a finite-order
system using multiple pulse inputs and repeated
experiments; (i) kernel approximation by an expansion
of orthogonal functions, with coefficients determined by
gradient-type algorithms and pattern recognition methods;
(iii) discrete Volterra kemnels determination in terms of
multi-dimensional ~ z-transforms  using  high-order
correlation functions and coloured Gaussian inputs.

In contrast with the generality features of Volterra
functional series and their approximation properties, one
difficulty is that the required kernel order may need to be
very large to achieve a specified accuracy over the given
set of inputs to outputs. The determination of even the
first- and second-order kemnels may involve large set of
parameters. In addition, identification of higher-order
non-linear systems based on Volterra series generally
leads to severe numerical problems for the determination
of the respective high-order kernels®®,

An alternative approach for systematic determination of
Volterra kernels of any order has been proposed by Wray
and Green?. By employing the theory of artificial neural
networks, Wray and Green?-have achieved particular
network architecture that is equivalent to a Volterra
series. The approach provides a way to extract the kernels
of all dimensions of a non-linear system that can be
realised by an artificial neural network. The developments
of the approach are outlined in the next section.

Neural Networks

Artificial neural networks"” are information processing
systems with the capability of learning through examples.
Based on concepts derived from neuro-biology, neural
networks are composed by a set of interconnected
processing units, called neurons. The neurons process the
signals presented to the neural network by accumulating
each stimulus and by transforming the total value using a
function; that is, the activation function. The stimuli to
and from, a neuron are modified by the real value called
synaptic weight, which characterises the respective
connection between neurons.

A typical representation for a generic neuron j, where
X;X3,...,Xp are the stimulus signals, Wi, W,..., W, are the
synaptic weights, § is a bias value, v; is the activation
potential, o; is the neuron output signal, and ¢f)) is the
activation function (generally adopted as a non-linear
sigmoidal funtion), is:

Figura 1 — Typical neuron representation.
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Then, from Figure 1, one can observe that:

b

vj=0j+2wj,-xi (3)
i=1

and

0; =¢(Vj) €]

Network architecture is the name given to the
arrangements of neurons into layers and how they are
connected. Typical neural networks have the following
architecture: (1) input layer — where the input stimulus is
presented to the network; (2) hidden layers — internal
layers of a network, and (3) output layer — the last layer of
the network, where the outputs are given. Such typical
network architecture is commonly referred as a mudti-
layer neural network.

To perform a desired task, the synaptic weights of a
network must be initialised and modified by a training
algorithm. In supervised training algorithms, the weights
are altered in accordance with a proper error-correction
rule (e.g., back-propagation algorithms) based on the
difference between desired and actual network outputs.

Neural network equivalent to Volterra series

In their paper, Wray and Green® have presented a
methodology of extracting the n™-order Volterra kernels
by means of neural networks with specific architecture.
For a SISO dynamic system, the neural network
equivalent to a Volterra series is illustrated in Figure 2,
where N is the number of time-delays of the input series,
M is the number of hidden neurons, u(t-j), for j=0,...,N, is
the input » at time-delay j, wy; is the synaptic weight in the
connection between input u at time-delay ; and the hidden
neuron i, ¢; is the synaptic weight in the connection
between the hidden neuron i and the output neuron, and
y(¥) is the network output at current time.

input

hidden layer

Figure 2 — Network architecture equivalent to a finite
memory, discrete Volterra series.

Such architecture also considers that the hidden neurons
present sigmoidal activation function and linear activation
function in the output unit. The premise of Wray and
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Green''” approach is that the activation of the hidden
neurons can be approximated by a n"-order polynomial
function. In this case, the network output can be given as,

M n
y@) = ZCJ-[ akjva %)
j=1 \k=0
where gy, are the polynomial coefficients and,
N
v =6+ wu(t-i) (6)
i=0

An important detail is the fact that if the hidden neurons
present different bias values, then the respective
polynomial representation will be also different.

By expanding Equations (5) and (6) and by grouping
appropriate terms, it can be shown that the network (cf
Figure 2) is equivalent to a finite memory, discrete
Volterra series('?, Moreover, if the network can be trained
to represent a dynamic system, the kernels up to the »"-
order in Equation (2), can be extracted according to the
following expression:
M

bo(71, 705000 Ty) = ZCI Quj Wr j We, oWy @)
j=1

Here, the activation finctions of the network hidden
neurons shown in Figure 2, are adopted as (8= 0.8),

2
== |- 8
?(v) (1+e—2ﬂv) (3)
Using the least squares method™, the n®-order

polynomial approximation of the activation function
given in Equation (8) can be obtained.

Non-Linear Identification via Volterra Series

To illustrate the approach a Volterra series representation
of an aircraft longitudinal dynamics using a neural
network is identified. The formulation used to simulate
the aircraft non-linear dynamics is obtained from the work
of Etkin and Reid"®. Here, it is assumed decoupled
longitudinal motion and linearised aerodynamic reactions.
The only non-linear effects to be considered in the
simulation are those originated by the coupling of pitch
angular velocity with both horizontal and vertical scalar
velocities. The resulting small disturbances set of aircraft
longitudinal equations of motion are given by,

XAu+ X w+X,q+X;5 36,
A =" ud 49775, e—gcosé?oﬁ—qw (9a)
: m
- i A
w:ZuAu+wa+qu+Z5¢é'e mg sin8,0 + mgAu (9b)
m—Z‘;,
MAu+M w+M Ww+Mg+Mg3,
= uBu wW wW+Mqq 5,0 (90)
m
b=g (9d)

where, u, w are the respective horizontal and vertical
scalar velocities of aircraft centre of gravity, g is the pitch
angular velocity, @ is the pitch angle, 6, is the reference
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pitch angle, o, is the elevator angle, .Y, Z, M, are
derivatives of the resultant acrodynamic reactions with
respect to the /* variable, m is the aircraft mass, g is the
gravity acceleration, /, is the inertia moment, dot symbols
represent d( )/dt, and A means small perturbations.

The data used are obtained from simulations of the
longitudinal dynamics of the Boeing 747-100 aircraft¥.
The adopted regime of flight is the cruising in horizontal
path at an altitude of approximately 12,000 metres and at
a Mach number of 0.8. Here, the horizontal scalar velocity
response, u(), due to variations in the elevator angle,
&4:(1), is considered in the identification process.

A supervised training process is used to obtain the neural
network equivalent to the finite memory, discrete Volterra
series. This identification process, shown in Figure 3,
commences with an initialisation of the synaptic weights
using random uniform distribution (-1.0 to 1.0). Back-
propagation algorithm™" is used to adapt the weights. To
speed up the process, adaptive learning rate and
momentum are also incorporated to the algorithm".

The training process demands that a broad range of
motion-induced aircraft responses be used in order to
enable the identified model to capture the non-linear
nature of the system. Normally, in non-linear systems
identification schemes®, input signals must present
specific statistical properties so that the main dynamic
features of the systems can be explored during the
process. Indeed, many techniques® have been developed
strictly for white Gaussian input forms. In the case of
aircraft identification, such approaches are questionable,
mainly due to the features of the external aerodynamic
loads involved in this problem.

Aircraft u(?)

Model
{¢f Equations (9a) to (9d))

a4

‘\

Neural Network
(Volterra series equivalent)

<

Figure 3 — Identification scheme.

Although the employment of random input forms to

_aircraft identification schemes may not be practical, here

these types of inputs are chosen because of their
mathematical value. As a first justification, one can
observe that the adopted aircraft equations of motion (cf.
Equations (9a) to (9b)) have been assumed with linearised
aerodynamic loads. Since the only non-linear effect is due
to the coupling of rigid body velocity variables and
neglecting complex non-linear transient aerodynamic
responses, the aircraft dynamics can, in principle, be
treated as any other dynamic system with weakly non-
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linear behaviour. The second justification is that by
presenting random inputs, a broader range of frequencies
and amplitudes can be associated to the system during the
identification process.

To perform the identification process, band-limited white
noise is assumed to compose the input motion. The
maximum absolute amplitude for the elevator angle is
limited to a range of 1.5° to 2°. Larger angles have been
avoided because, even being the aircraft¥ linearly stable,
non-linear marginal instability could jeopardise the
identification process. In addition, aircraft long period
motion response is also assumed. The training pattern has
a sample interval of 1.0 second to facilitate adequate
representation of the motion-induced responses.

In order to assist the identification process, the
input/output time-series pattern for the network training is
subdivided into two parts. One part is used for the training
itself (¢fraining set) while the other one is used to perform
measurements to the resulting network output (fest ser).
The training set is taken in a random (may be not
sequential) from the half of the total input/output time-
series pattern and the remaining set is the test one. Time
windows depending on the assumed number of time-
delays, N, are presented to the network and the resulting
error measure is used in the back-propagation algorithm.
After back-propagating the accumulated errors from feed-
forwarding the training set inputs (batch mode), the test
set is presented to the network and the total error (sum of
squared errors) is obtained. After the end of this step, an
epoch of the training is completed. If this error
measurement is lower then a user-defined value (0.01 in
this case), the identification process is stopped. An
another stop criterion is based on the number epochs.

To compose the input training pattern a noise power value
of 0.0005 and sample time of 27 are adopted. These
parameters have been taken from observing both the input
limitations described above and the system output
behaviour.

The neural network training parameters are: number of
time delays (N) in the input series is 10; number of hidden
neurons, (M) is 50; starting learning rate of 0.01; and
starting momentum constant of 0.85. The training has
been carried out in 10,000 epochs.

Figure 4 presents a comparison between the aircraft non-
linear response obtained by simulations of the Equations
(9a) to (9b) and the respective Volterra series

representation afier completion of the neural network .

training process.

The resulting neural network equivalent to a Volterra
series representation of the non-linear dynamic system
can also be used to extract the kernels. Using the
methodology exposed in the previous section, the first-
and second-order Volterra kernel approximations of the
identified aircraft non-linear dynamics model can be
calculated. Figures 5 and 6 depict the two kernels,
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respectively. Higher-order kernels could also be extracted,
but the extensive number of variables would tumn their
illustration very difficult.

To test the robustness of the identified model a set of
arbitrary characteristic motion-induced horizontal scalar
velocity histories are presented to the neural network.
Figures 7 to 12 show the comparison of the desired
simulated outputs of the network equivalent to the
Volterra series representation.
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Figure 4 — Horizontal scalar velocity response due to
elevator angle motion - training results (solid: aircraft
model simulation; dashed: neural network output).
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Figure 5 — First-order kernel of the Volterra series
representation of the horizontal scalar velocity response to
variations of the elevator angle.
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Figure 6 — Second-order kernel of the Volterra series
representation of the horizontal scalar velocity response to
variations of the elevator angle.
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Figure 7 — Horizontal velocity response to a 2° amplitude
elevator angle step input (solid: aircraft model simulation;
dashed: neural network output).

Discussions

The ability of the neural network model to capture the
essential features of the non-linear aircraft longitudinal
dynamics can be observed in emulations for a broad range
of motion-induced history used during the training
process. In contrast to the time demanded by the training
process to identify the model, the final network
evaluations are fast enough to allow real-time predictions
of non-linear dynamic system responses, justifying
applications in analysis and control design. Moreover, the
Volterra series approach allows subsequent bilinear
representation. ;
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amplitude, 5s at max. amplitude, 50s period, elevator
angle squared pulses input (solid: aircraft model
simulation; dashed: neural network output).

hind
@

ELEVATOR ANGLE [dagress)
o e
&~ o,

o«
o N

i i i

&
o
5

&0 100 150 20 - 300 -1 400
TIME [sec]

Fm T T T T T T
g : ; : : :
£ sh/N ; i e — f ;
SN NN yavaw
TN TV R TN
g H H H H

o

50 100 150 200 250 300 350 400
TIME {sec]

Figure 9 — Horizontal velocity response to a 1°
amplitude, 10s at max. amplitude, 150s period, elevator
angle squared pulses (solid: aircraft model simulation;
dashed: neural network output).

For the identified neural network model the non-linear

“behaviour of the horizontal scalar velocity response is

adequately captured. Few discrepancies can be observed
in the network model output afier training. These are
mainly associated to imperfections in the training
algorithm (e.g., local minima problem) and to the non-
linear characteristics of the horizontal velocity response.
In addition, the statistical features of the random input
series used for training may have induced to these
imperfections.




Copyright © 1998,

and the American Institute of Aeronautics and Astronautics, Inc.

>

ELEVATOR ANGLE [degress)
- 3 o
/ /
-
<
.
/
/
-
\
h/

o 100 E=) 400
TIME [sec]

— 300 T T T T T

3 : s i

> 200

g 1 _ /7 \\

S 1w /2 f /A

3 0 N /,// N , \ // \\\ ,//

énm \/ - \\/ \\ / \’\ 4

g [ 4 \
Xy 100 150 200 20 300 0 400

ELEVATOR ANGLE [degtees)
o

&
!

by the International Council of the Aeronautical Sciences (ICAS)

n
T

T

TIME {sec|

o 50 100 150 200 250 300 33 A00
TIME [sec]
-y ‘0 T T T T T T
£ z : : i
E 2 ¢ [’\ : /r
BVANN AN AW NANYA
2 \ N’ \/ /
g 1] { \
N 4 4 <
§ H H M H
-‘Q L 1 i 1 1,
] 50 100 150 0 23 300 350 400
TIME {sec]

Figure 10 — Horizontal velocity response to a 1°
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input (solid: aircraft model simulation; dashed: neural

network output).
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Figure 11 — Horizontal velocity response to a 2°
amplitude, 0.00375 Hz frequency, elevator angle
sinusoidal input (solid: aircraft model simulation; dashed:
neural network output).

Generally, the predictive capabilities of the identified
network model are shown to be satisfactory for the
majority of the generalisation test cases within the
training limits. - This also confirms the underlying
capability of Volterra functional series for the aircraft
non-linear dynamics representation. Examining the first
two Volterra kernel approximations, one can observe how
the series is composed to represent the degrees of non-
linearity corresponding to this dynamic system. The first-
order kemel (cf. Figure 5) represents the linear component
of the Volterra series and can be associated to the unit
impulse response to the system. The;second-order kernel
gives an idea of how the non-linear effects are distributed.
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Figure 12 — Horizontal velocity response to a 2°
amplitude, 0.015 Hz frequency, elevator angle sinusoidal
input (solid: aircraft model simulation; dashed: neural
network output).

When tested with a 2° amplitude step-input elevator
motion (¢f. Figure 7) which leads to a typical long period
phugoid response, the identified model reveals reasonable
approximation of the horizontal velocity response. The
delay encountered between the desired and predicted
responses can be related to a loss of frequency description
in the training pattern, or the need for more time-delays
() in the composition of the inputs to the neural network.
Another aspect related to the delay could be the motion
amplitude that is over the maximum value used to limit
the training pattern (¢f. Figure 4).

Figures 8 and 9 present generalisation tests for squared
pulse types of elevator motion. The case in Figure 8
corresponds to the horizontal velocity (u(?)) response to
2.5° amplitude squared pulses, starting at 30 s, 5 s
duration in maximum amplitude, and period of 50 s. The
identified model reveals a time lead-lag with respect to
the desired response, although the main features of the
horizontal velocity response history has been captured. A
possible reason for this deficiency could also be
associated to the maximum amplitude of the input motion
that is higher than the adopted in the training pattern. In
the case of Figure 9, however, the identified network
model satisfactorily predicted all the features of the
horizontal velocity response history within the training
limits. The input of 1° amplitude squared pulses, starting
at 30 5, 10 s duration in maximum amplitude, and period

- of 150 s, comprises the case.

The behaviour of the identified model is also tested for
characteristic sinusoidal inputs of the elevator angle with
different amplitudes and frequencies. Figures 10 to 12
shows the prediction results to sinusoidal motion-induced
histories. Despite the differences and the prediction
disparities, the identified network model maintains the
main features of the horizontal velocity response history.
It can be observed that frequency and amplitude features
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of the input motion history significantly influence the
prediction capabilities of the identified model. As far as
amplitude is concerned, the same kinds of discrepancies
observed in the previous generalisation tests have been
associated to the sinusoidal-type of motion-induced
horizontal velocity responses. Specifically, the cases
shown in Figures 11 and 12 present this dissonance.

The frequency effects to the predicting horizontal velocity
responses have shown that the training process failed to
provide complete modelling. However, the main features
of the motion-induced responses have been all captured.
Some large errors can be observed in cases with certain
extreme frequency and amplitude values (¢f. Figure 11).
Particularly, in Figure 12 the horizontal scalar velocity
unstable response reveals that in these circumstances, the
model comprehensively fails to predict the combined
frequency and amplitude features of the system response.
This case comprises a 2° amplitude sinusoidal input
motion with frequency of 0.015 Hz. Interestingly, the
identified network model has been capable of predicting
the instability, from what can be inferred that the resulting
model provides reasonable representation of the system
non-linear dynamic characteristics.

Conclusions

Volterra functional series, obtained by an equivalent
neural network model, provides a suitable representation
of an aircraft non-linear longitudinal dynamics. Supported
by the rigorous concepts underlying the Volterra
functional series approach to non-linear systems
identification, the successful application of neural
networks to determine an equivalent representation
ensures both reliability and accurate mathematical
description for the resulting model.

Comparing this approach to other non-linear identification
methods, the neural network technique has provided a
much more powerful tool for a systematic assessment of
equivalent Volterra functional series of non-linear
dynamic systems representation.

The principal advantages of the approach are associated to
the premise that an exact description for a continuous
non-linear, causal, time-invariant system can be furnished
by a Volterra functional series. Moreover, the application
of neural networks for the systematic assessment of all
Volterra kernels, facilitates the production of parametric
models allowing fast evaluation of the system response.

Generalisation tests have shown good predictive
capabilities of the identified model within the training
limits. Delays in the response predictions demonstrated by
the test cases have been the only significant imperfections
related to the identified model. Such errors can be related
to training deficiencies or poor training pattern. The
identified model has also presented adequate performance
in a test case where the input motion induced to unstable
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condition of the aircraft response. For the aims of this
investigation these results can be considered satisfactory.

Extensions for the production of multiple-input, multiple-
output system representations, application of the models
in the analysis and control design of aircraft non-linear
dynamics, and improvements to the neural network
training algorithms will be the further steps of this
research work.
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