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1.0 Abstract

A practical optimization method for adjusting
each element stiffness of a finite element struc-
tural model (FEM) has been developed to improve
the correlation of both frequencies and mode
shapes predicted by the FEM with those measured
by the ground vibration test (GVT). A modified
version of the Van de Vooren perturbation
technique is developed to effectively approximate
(1) frequency and mode shape derivatives of each
finite element or each preselected substructure
(group of elements) and (2) the eigensolutions.
The derivatives are used to determine element
stiffness factors for a gradient search algorithm
to modify the structure within reasonable bounds
to converge in incremental steps to achieve an
acceptable correlation. The eigenvalue solution
with the modified FEM verifies the convergence.

A NASTRAN-based FEM of a wing torque box, using
nine modes, demonstrates the cost effectiveness,
efficiency, reliability, and accuracy of the
method.

2.0 Introduction

During the course of developing a structural
system, the FEM is usually constructed to analyze
the system dynamic characteristics. On the basis
of the calculated dynamic and static
characteristics, the structure is determined to
be adequate, marginal, or inadequate to meet the
required specifications, such as preventing.
Elutter and divergence from occurring within the
flight envelope. If found to be inadequate, the
structure is modified to be at least marginal.
Most dynamic analyses, in general, yield
approximate solutions based on overly
conservative assumptions such that the resulting
solution characteristics may be doubtful as to
their accuracy. For these doubtful solutions,
specially when found to be marginal, natural mode
testing is required to validate the structural
dynamic basis for the analysis.

As usually happens, the test frequencies and
mode shapes differ from those calculated.
Several methods found in the current literature
have been proposed to achieve modal correlation
between analysis and test. Many of these methods

-6) modify the analytical stiffness and mass
matrices. While some of the methods apparently
improve correlation with the test modes in
essentially closed form, the modified stiffness
and mass matrices are not traceable to reflect
the actual structural modification., Sometimes a
strain energy density approach or detun{ng has
been used to avoid resonant vibrations (10),

In contrast to such matrix adjustment
methods, this paper describes a method whereby
the structural modifications can be assessed at
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the FEM level to achieve improved correlation.
The proposed Multi-Mode GVI/FEM Correlation
method of modifying structural elements, rather
than the stiffness matrix, tends to be more
meaningful to the analysts, designers, and
manufacturers. Based on the adjusted and
correlated structure and the validated FEM, more
accurate and reliable solutions for the dynamic-
characteristics of that structure will yield
greater confidence in the integrity of the
structure.

3.0 Description of Method

The Ground Vibration Test/Finite Element
Model (GVT/FEM) Correlation method and code (NCP)
of this paper combines the general-purpose
finite-element structural analyses capabilities
of NASTRAN (7) with a new external program,
CORFEM. CORFEM compares the analytical (FEM)
modes with the test (GVT) modes in order to
optimize the adjustments to the FEM. The mass
matrix is assumed to be unchanged and the modes
to have little or no damping. Also, since modal
testing is performed with some kind of structural
support for the test vehicle, only fixed - free
and fixed-fixed boundary conditions, including
soft suspension supports, are considered.

The essential feature in CORFEM is the
modified version of the Van de Vooren
perturbation method (MVP), that efficiently
calculates the new frequencies and mode shapes of
a given structure for perturbations to the
?t§ffness and mass properties of the.structure

8 The modification uses a recursive
technique that is amenable to the modern computer
that was not previously available.

Recursive 1 retains the first order and
implicitly updates frequency and mode shapes;
recursive 2, retains the first order and updates
eigenvalues and eigenvectors explicitly, as
indicated by the equations in Appendix C. Table
1 shows how convergence of the eigenvalues
(roots) for the original Van de Vooren formulae
compare with those of the modified recursive
versions for a two degree of freedom problem.

The flow chart of Figure 1 indicates the
essential steps in two loops for the overall
program. During the iterative inner loop, after
the analytical modes have been calculated and
determined to exceed the correlation tolerance,
the changes in element stiffnesses are calculated
using the frequency and mode shape derivatives
based on the MVP technique. The new frequencies
and mode shapes for the updated structure are
also calculated using MVP, In the outer loop,
the FEM is updated through NASTRAN and an exact
eigensolution is obtained to verify the MVP
solution. The process is repeated until the
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correlation tolerance is met,

1, the
steps:

(1)

(2)

(3)

procedure takes the following

NASTRAN generates the FEM and the

As shown in Figure

flexibility, mass, and element stiffness

matrices in the dynamic degrees of
freedom (DDOF).

CORFEM calculates the FEM modes and
sorts them to correspond with the GVT
modes.

CORFEM computes for each selected mode

the square root sum of squares (SRSS) of

(4)

(s)

frequency and mode shape errors and the
total error between corresponding or
matching FEM and GVT modes.

Convergence within CORFEM occurs if the
total error is less than the required
tolerance, or if a local SRSS minimum
occurs.

Until convergence occurs, FEM frequency
and mode shape derivatives and element
siffness change factors are updated,
based on a constrained optimization
method.

TABLE 1. ROOT ERROR COMPARISON BETWEEN ORIGINAL AND RECURSIVE VAN DE VOOREN METHODS
FOR TWO DOF PROBLEMS

PER CENT ROOT ERRORS FORK; = 2

%K11

METHOD ROOT APPROXIMATION ORDER
NO. 1 2 3 4
ORIGINAL 1 -8.52 0.09 _ —
2 0.90 -0.01 o —
My=2
RECURSIVE 1 1 -8.52 0.65 -0.05 +0.00
Xq 2 0.90 -0.02 +0.00 0.00
Ky =2 RECURSIVE 2 1 852 0.09 - -
2 0.90 -0.01 — —
My=4
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Figure 1. Flow Chart of GVT/FEM Correlation
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3.1 NASTRAN Finite Element Analysis (Outer Loop)

A finite element model of the given
structural design is formulated and constructed
for analysis with Rockwe%l's version of the NASA
COSMIC-released NASTRAN (7) software program.
Multipoint constraint equations (MPC) are
separately generated using a preprocessor for
Rockwell NASTRAN that couples user-selected
points, associated with the DDOF and which are
identical to the GVT DOF, to the structural DOF
(SDOF). NASTRAN is used to generate the
flexibility matrix and to transform it from SDOF
to DDOF using the MPC-based transformation (T) as
follows:

-1 t -1
K =TK T (1)
D S
The transformation matrix {B) relating the DDOF
to the SDOF, as derived in Appendix A, is '
obtained with a NASTRAN DMAP instruction:
t -1
B=K T K (2)
D S

The current CORFEM program calculates the FEM
modes using the DDOF. Since the deformations of
the GVT mode shapes are normally restricted to a
reasonable number of points and DOF on the vibra-
ting structure, a maximum of about 200 DOF, the
analytical model is transformed to these DDOF.
This one-to-one correspondence between the FEM and
GVT modes can provide an on line solution to
obtain information for making timely engineering
judgments concerning the structure. The inner
loop iterative process of Figure 1 uses a further
DOF reduction, the modal DOF, which reduces the
order of the eigenvalue problem for rapid
optimization.

3.2. Orthogonalization of Test Modes

For proper correlation, the GVT modes should be

orthogonal with respect to the mass matrix, under the

assumption that the mass matrix is valid for the
structural system of the test. A procedure to
orthogonalize the modes is given in Appendix B.
This orthogonalization should be preceded by careful
observation of the modes shapes in an attempt to
smooth the data using engineering judgment based
on test-mode-shape plots. If after the
orthogonalization process, some of the modal
frequencies and shapes deviate significantly from
the raw data, then those deviant modes should be
deleted from the correlation process. The degree
of deviation warranting deletion is a question of
engineering judgment. These deleted modes may be
presumed to have been measured inaccurately. The
remaining modes should be suitable for
correlation.

3.3 CORFEM Optimization {Inner Loop)

3.3.1 Mode Sorting. A one-to-one correspondence
between the FEM and GVT modes is required to
obtain the appropriate SRSS errors based on
sorting the scaled FEM modes with respect to the
scaled GVT modes, as respectively denoted using
subscripts F and G. Scaled modes are defined to
be mass-orthonormal:

t t
(VIMW)=1I and (VIM(V) =1 (3)
E F G G

The sorting criteria uses a cross-orthogonal-
ization between the FEM and GVT modes. The ith
FEM mode corresponds to the jth GVT mode where
mjj is closest to unity.

t
(V) M(V) =m
Fi  Gj ij

(4)

If a higher frequency ith mode selects the same jth
mode, then the modes are sorted according to the
mode closest to the value of unity.

3.3.2 Objective Function (SRSS Errors). After
matching the FEM modes with the corresponding GVT
modes, the SRSS error in frequencies and mode
shapes is calculated as follows:

n 2.1/2
e =[= (f -£)] )
f j=1 F G
nd 2 1/2
e =[=23% (v -v) ] (6)
i=1j=1 F G

\'
where d number of DDOF
n ec

= selected number of modes
Convergence to a global minimum occurs when the
erYor sum €g = eg + ey , becomes less than a
required tolerance of approximately 2%.

3.3.3 Frequency and Mode Shape Error
Derivatives. To minimize the error sum, a
constrained optimization procedure determines
adjustment factors for the element stiffne§ses
using the frequency and mode shape derivatives.
The modified Van de Vooren formulae for u?dating
frequencies and mode shapes due to the stiffness
perturbation, AK, as derived in Appendix C, for
Recursive 1, are:

-1
(8h) = -(k_+B) [8
11

A 3B b )p] ir (7)
ir ii ii i j i Ji

)
i ifj=11i

ijr (8)
-1
—[ﬁ +§ 8 (p )]/E& +B -(1) ] s#i&jziFd
ij s=1 is sjeAl tii i ir
AV =V (p-1) (9)
t
where g =V @KV .
k = diagonal elements of V KV
ii .
K = dynamic stiffness matrix )
AKX = change in dynamic stiffness matrix
\') = dynamic mode shapes
-2 _2
x = W = (Z’ff )
i i i
o = generalized mode shape
ij
r = order of approximation
e =r71-1
n = mumber of system modes
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The frequencies and mode shapes for a small
stiffness change of each element may alternately
be expressed as follows:

-1/2
fF (1 /2#)[‘».+ (Ax)] (10)

v V p (i)
F r

The change in SRSS error sum due to 0.1%
change, say, in each element stiffness matrix is
used to compute derivative or modal sensitivity
due to that element:

Ae/ Ak = - e ) /Ak
S

(e +e

(12)

where Ak = the change in the generalized

stiffness for the given element

3.3.4 Computation of Stiffness Change Factors.
The stiffness matrix of a selected element or
substructure is multiplied by its factor ¢ that
is optimally determined to minimize the SRSS
error sum by performing a gradient search such
that the elements with the larger derivatives
obtain the larger c values in a given iteration.

{c) =Re (Ae/tk) (13)
i S i
where R = 0.8 for the first iteration
R = 1.0 for subsequent iterations

These ¢ values are restricted to within reasonable
bounds, say, a minimum of 0.55 and maximum of 1.50.

3.3.5 Update of Frequencies and Mode Shapes by
MVP. After the stiffness change factors are
updated, the element stiffness matrices are
summed to obtain the total system stiffness
matrix in DDOF; and the new frequencies and mode
shapes are calculated via the recursive Van de
Vooren formulas using Egs. (7)-(9).

3.3.6 Convergence Criteria. Convergence is
deemed to occur when the following conditions are
satisfied; otherwise, the inner loop of steps (2)
through (5) of paragraph 3.0 are repeated.

(1) the SRSS error sum reaches a local minimum,

(ii) the SRSS error sum meets the inner loop
tolerance (TOLI), or exceeds the frequency,
mode shape, and outer loop tolerances (TOLF,
TOLV, TOLO of Figure 1).

If tolerances are exceeded, the FEM is modified to
the current update of the inner loop and the
NASTRAN FEM analysis of the outer loop is
executed. This outer-inner loop process is
repeated until the SRSS error sum is within the
designated inner and outer loop tolerances. Once
the outer loop set of analytical modes meets the
designated tolerance requirements, the modes are
considered correlated and the program is exited.

4.0 TIllustrative Examples

4.1 Introduction

The examples presented here are based on an
all aluminum wing torque box shown in Figure 2 by
a quasi-isometric view. The 16 circled points
represent the structural nodes having x, y, and z
displacements. Structural nodes 13, 14, 15, and
16 are fixed. The nine square points are the
dynamic nodes having z displacements only. The
dynamic nodes are assumed to be in the mid-wing
plane. Figure 3 shows the distribution of the
finite elements consisting of upper and lower
cover elements, vertically oriented shear
elements, and rod elements.

Four different FEM cases were generated to
exercise the NASTRAN/CORFEM software programs
(NCP). Table 2 shows the structural node points
and gages for the rod, shear, and membrane
elements for the cases. Case 1 FEM incorporated
15 trapezoidal shear elements cornered by four
structural nodes and 24 rod elements with two
structural nodes, one node at each end of each
rod. EBach rod element had a cross section of 0.20
sq. in.; and each shear element had a gage of 0.01
in. for the GVT configuration and a gage of 0.015
in. for the FEM configuration.

Cases 2, 3, and 4 were built from six
membrane elements, three for the upper cover and
three for the lower cover, nine shear elements for
the "ribs' and '"'spars,' and 24 rod elements. The
GVT configuration for the three cases had shear
and membrane elements with gages of 0.010 in. and
rod element areas of 0.01 sq. in. and shear and
membrane gages of 0.015 in. Case 3 FEM had rod
membrane gages of 0.01 sq. in. and shear and mem-
brane elements with alternating gages of 0.013 and
0.007 in., as shown in Table 2.

Case 4 FEM had rod areas of 0.010 sq. in. and
shear and membrane gages of 0.010 in. except for
element 8, which had a gage of 0.0001 in. The
anomalous gage for element 8 was selected to
represent a possible inadvertent error by the FEM
modeler.

Two basic assumptions were applied for the
four cases. The dynamic mass matrix, which
consisted of non-zero elements on the diagonals
only, remained unchanged; and only the shear and
membrane elements were allowed to change gage
during the correlation. Comparisons of the upper
and lower cover gages between the GVT and the FEM
cases are shown in Figure 4,

4.2 Case 1 Results

Case 1 was selected initially as a
convenient problem for NCP to solve. The GVT
frequencies and the FEM frequencies with their
percent errors are listed in Table 3. Modes 2, 4,
S, and 7 reflect errors associated with the shear
element stiffnesses. Modes 1, 6, 8, and 9 were
dominated by the rod element stiffnesses, which
were the same in the FEM as for the GVT
configuration, as indicated by the small
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NODE POINTS
O STRUCTURAL (X, Y, Z ONLY)
O DYNAMIC (Z ONLY)
STRUCTURAL PTS 13, 14, 15 & 16 FIXED

PLANE OF DYNAMIC POINTS

13
(20,0, 3)
-
e 014‘;| l
(-8, 60, 1) _,,—'//ﬁf ) [ ]
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Dg 8 12 16
ol ,0.0.0
O

Figure 2, FEM Test Case Node Points

OPEN NOS. ARE SHEAR AND ELEMENT MEMBERS

(O - STRUCTURAL NODE POINT
Figure 3. FEM Structural Elements

TABLE 2. WING TORQUE BOX FEM ELEMENT DEFINITIONS AND GAGES

ELEM STRUCT, NODE PTS. CASE 1 CASE 2 CASE 3 CASE 4
NO. JYPE JGAGE IN.1 TYPE IGAGE,IN.] TYPE IGAGE IN.| TYPE I[GAGE,IN.
1 14 10 9 13 ] 0.015 S 0.015 S 0.013 S 0.010
2 10 12 16 14 S 0.015 M 0.015 M 0.007 L] 0.010
3 16 12 1 15 s 0.015 S 0.015 S 0.013 S 0.010
4 1 3 7 5 ] 0.015 M 0.015 M 0.007 M 6.010
5 10 6 5 9 S 0.015 S 0.015 S 0.013 S 0.010
6 12 8 k4 " s 0.015 S 0.045 S 0.007 s 0.010
7 2 4 3 1 S 0.015 S 0.015 s 0.013 S 0.010
8 2 4 8 6 S 0.015 M 0.015 M 0.007 M 0.0001
9 5 7 11 g S 0.015 M 0.015 M 0.013 M 0.010
10 6 2 1 5 S 0.015 S 0.015 S 0.007 S 0.010°
11 6 8 12 10 S 0.015 L] 0.015 M 0.013 M 0.010
12 6 8 7 5 S 0.015 S 0.015 S 0.007 S 0.010
13 10 12 11 9 S 0.015 S 0.015 S 0.013 s 0.010
14 8 4 3 k4 s 0.015 S 0.015 S 0.007 S 0.010
15 9 n 15 13 S 0.015 M 0.015 M 0.013 L] 0.010
16-39 ROD 0.20 ROD 0.010 ROD 0.010 ROD 0.010

S = SHEAR ELEMENT M = MEMBRANE ELEMENT
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——— GVT COVERS

FEM COVERS

GAGE (IN.) CASE 1 GAGE (IN.) CASE 2
A
008 - UPPERANDIOWER. ___ ] 0.018 ¥ _UPPERANDLOWER _ _ _ _
0.012 0.012 -
UPPER AND LOWER UPPER AND LOWER
0.008 0.008
0.004 0.004
0 iy 0 >
1 2 3 Bay 1 2 3 BAY
cscE ) ascE )
0.016 ~ 0.0164
UPPER AND
| _uepen _ | _ Lower
0.012 0.012
UPPER AND LOWER UPPER AND LOWER
i v/
0.008 0.008 }~——— UPPER AND LOWER —t— UPVPER —
LOWER UPPER AND
0.004 LOWER 0.004
LOWER
1 2 3 BaAY 1 2 &) BAY
Figure 4. Cover Gages for Cases 1, 2, 3, and 4
TABLE 3. FREQUENCY AND PERCENT ERROR CHANGES FOR CASE 1
MODE GVT INITIAL FEM PASS 1 PASS 2
NO. FREQ, HZ FREQ, HZ % ERROR FREQ, HZ % ERROR FREQ, HZ % ERROR
1 10.66 10.79 1.2 10.66 0.0 10.65 -0.1
2 28,50 34.06 19.5 28.42 -0.3 28.43 -0.2
3 47.00 51.70 10.0 47.36 0.8 47.03 0.1
4 80.58 96.64 19.9 80.57 -0.0 80.49 0.1
5 186.3 216.7 16.3 185.0 -0.7 184.7 -0.9
6 2471 250.7 1.5 247.0 -0.0 2471 0.0
7 298.8 350.5 17.3 296.1 -0.9 296.5 -0.8
8 461.5 477.5 35 461.1 0.1 461.2 0.1
9 2656, 2729. 2.7 2677. -0.8 2673. 0.6
FREQ. RMS ERROR 12.76% 0.54% 0.45%
SHAPE RMS ERROR 7.67% 1.08% 0.54%

percentage frequency errors. The plots of Figure
S show the frequency and mode shape error
convergence for the two passes of NCP. The
initial SRSS frequency and mode shape errors, as
shown in Figure 5, were 0.3828 and 0.2361, or
38.28% and 23.61%; the equivalent RMS errors were
12.76% and 7.67% The first pass through NCP
showed a significant reduction in both the
frequency and mode shape errors, particularly for
the first three iterations. The remaining four
iterations of the first pass achieved further
error reductions but by smaller factors to
eventually meet the tolerance SRSS value of

2.5%. An analysis update of the FEM through
NASTRAN was performed, and the second pass inner
loop iterations met a tolerance SRSS value of
1.5%. The final check yielded very small RMS
errors of 0.45% for frequencies and 0.54% for
mode shapes. RMS errors are tabulated because of
its popular usage. Comparisons of the node lines
are shown in Figure 6. Relatively small
differences appeared between the GVT and the
initial FEM node lines, except for mode 8. The

correlated node lines were almost identical for
all nine modes.

The shear element gage errors are listed in
Table 4, showing the initial FEM gages with RMS
errors of 50%. These gage errors were reduced by
NCP to an RMS error of 7.0% after pass 1 and to
3.9% after pass 2.

The updated finite element eigensolution
analysis check yielded a slightly different set
of frequencies and mode shape errors than those
at the end of the MVP pass 1. This difference is
attributed to a combinaton of the approximate
nature of the perturbation solution and the
update of the transformation matrix, B, by the
NASTRAN second analysis.

The results of Case 1 were considered well
within the realm of engineering accuracy to
pursue other cases to develop more experience
with NCP,
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18T PASS 2ND PASS
SRSS SOLID SYMBOLS = EIGEN SOLUTION SRSS
OPEN SYMBOLS = PERTURBATION SOLUTION Y
0.4 — r 0.04
s————FIRST PASS SECOND PASS ~——-
FREQ
0.3 \ 0.03
T\ SHAPE
g
0.2 L 0.02
FREQ
SHAPE
0.1 / 0.01
0 0
2 6 NO. OF ITERATIONS
NO. OF ITERATIONS 0 2 4 6

Figure 5. SRSS Errors With Iteration for Case 1

GVT & CORRELATED ANALYSIS —— - o o w  (NITIAL ANALYSIS
MODE 1 MODE 4 MODE 7
1B 27 3T
MODE 2 1 MODE 5
1T 3B
MODE 3 MODE &
28 CAMBER
B = BENDING T = TORSION P = PLATE

Figure 6. GVT and FEM Node Line Comparisons for 9 Modes (Case 1)
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TABLE 4. GAGE AND PERCENT ERROR CHANGES FOR CASE 1

ELEM | TYPE GvVT INITIAL FEM PASS 1 PASS 2
NO. GAGE, IN.|GAGE, IN. | % ERROR |GAGE, IN. | % ERROR | GAGE, IN.]% ERROR
1 S 0.010 0.0150 50.0 0.01063 6.3 0.01018 1.8
2 S 0.010 0.0150 50.0 0.01147 14.7 0.01083 8.3
3 S 0.010 0.0150 50.0 0.01038 3.8 0.00999 -0.1
4 S 0.010 0.0150 50.0 0.01092 9.2 0.01066 6.6
5 S 0.010 0.0150 50.0 0.00952 -4.8 0.00947 -5.3
6 S 0.010 0.0150 50.0 0.00950 -5.0 0.00964 -3.6
7 S 0.010 0.0150 50.0 0.01018 1.8 0.01007 0.7
8 S 0.010 0.0150 50.0 0.00937 -6.3 0.00957 -4.3
9 S 0.010 0.0150 50.0 0.00949 -5.1 0.00977 -2.3
10 S 0.010 0.0150 50.0 0.00928 -7.2 0.00958 -4.2
1" S 0.010 0.0150 50.0 0.00924 -7.6 0.00966 -3.4
12 S 0.010 0.0150 50.0 0.00952 -4.8 0.00987 -1.3
13 S 0.010 0.0150 50.0 0.00957 -4.3 0.00993 -0.7
14 S 0.010 0.0150 50.0 0.00926 -7.4 0.00977 -2.3
15 S 0.010 0.0150 50.0 0.00923 -7.7 0.00965 -3.5
SHEAR ELEM RMS
ERROR 50.0% 7.0% 3.9%

NOTE: S = SHEAR ELEMENT

4.3 Case 2 Results

The FEM for Case 2 reflected a more normal
wing torque box structure by using membranes
instead of shear elements for the covers and more
flexible rods with reduced cross sectional areas
than for Case 1. See Table 2. Since the
membrane elements now dominated the box
stiffness, the constant gages of 0.0l in. for the
GVT and 0.015 in. for the FEM yielded constant
RMS frequency errors of approximately 21% between
the GVT modes and the initial FEM modes, as
indicated in Table 5. The mode shape errors were
relatively small. For both passes 1 and 2 of
NCP, most of the frequency error reductions
occurred during the first three inner loop
iterations, as indicated in the converging plots
of Figure 7. The results of pass 1 reduced the
RMS frequency error from 21.1% down to 2.2% and
for pass 2 down to 0.4%. Table S shows the
frequency errors of the nine modes for the
initial FEM and after the two passes. Similarly,
the mode shape RMS error dropped from 0.83% to
0.77% to 0.48%.

The gage correlations between GVT and FBEM,
as shown in Table 6, indicated that the membrane
elements had an initial RMS error of 50%, which
was reduced to 6.7% after pass 2. Since some of

the shear elements did not significantly affect
the modes, their gage RMS errors were reduced from
the initial value of 50.% down to 27.3%. The
frequency and mode shape errors were significantly
reduced by a second pass while the gage errors did
not change much, except in distribution.

The correlation results of Case 2, for which
two kinds of elements were allowed to vary, were
also considered within engineering accuracy.

They showed NCP to yield successful results for
dynamic analysis usage.

4.4 Case 3 Results

The initial FEM shear and membrane element
gages were chosen to alternate from 0.013 in. to
0.007 in., as indicated in Table 2 and in Figure
4, which show the membrane elements only. This
case was analyzed to exercise NCP for a more
stringent example. The gages were allowed to
range between a minimum of 0.007 in. and a
maximum of 0.013 in. Three passes were
calculated, and Figure 8 shows the convergence
trends for the frequency and mode shape errors.
Starting with RMS frequency and mode shape errors
of 5.0% and 8.9%, the RMS errors after pass 3
were reduced to 0.4% and 1.3%.

TABLE 5. FREQUENCY AND PERCENT ERROR CHANGES FOR CASE 2

MODE GVT INITIAL FEM PASS 1 PASS 2
NO. FREQ, HZ FREQ, HZ % ERROR FREQ, HZ % ERROR FREQ, HZ % ERROR

1 7.562 9.097 20.3 7.665 1.4 7.551 -0.1
2 26.79 32.68 22.0 27.38 2.2 26.80 0.0
3 36.09 43.59 20.8 36.82 2.1 36.12 0.1
4 77.64 94.74 22,0 79.47 24 77.80 0.2
5 156.6 189.9 21.3 161.1 29 156.8 0.1
6 241.4 293.2 215 247.2 24 242.7 0.5
7 278.5 338.9 21.7 286.2 2.8 279.9 0.5
8 392.7 475.8 21.2 399.1 1.6 391.3 -0.4
8 1533. 1826. 19.1 1546. 0.8 1520. -0.8

FREQ. RMS ERROR 21.11% 2.15% 0.42%

SHAPE RMS ERROR 0.83% 0.77% 0.48%
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18T PASS 2ND PASS
SRSS SOLID SYMBOLS = EIGENSOLUTION SRSS
8 4 OPEN SYMBOLS = PERTURBATION SOLUTION 4 08
FIRST PASS SECOND PASS —————
[
6 K .06
FREQ FREQ
4 .04
2 + .02
SHAPE
SHAPE
0 0
0 2 6 8 NO. OF ITERATIONS
NO. OF ITERATIONS 0 2 4 6 8 10 12
Figure 7. SRSS Errors With Iteration for Case 2
TABLE 6. GAGE AND PERCENT ERROR CHANGES FOR CASE 2
ELEM | TYPE| GVT INITIAL FEM PASS 1 PASS 2
NO. GAGE GAGE |% ERROR| GAGE |% ERROR] GAGE }[% ERROR
1 [ 0.010 0.0150 50.0 0.01051 5.1 0.01017 1.7
2 M 0.010 0.0150 50.0 0.00951 -4.9 0.00922 - 78
3 s 0.010 0.0150 50.0 0.01087 8.7 0.01010 1.0
3 M 0.010 0.0150 50.0 0.01060 6.0 0.01039 3.9
5 S 0.010 0.0150 50.0 0.01105 10.5 0.01006 0.6
6 s 0.010 0.0150 50.0 0.01080 8.0 0.00982 - 1.8
7 s 0.010 0.0150 50.0 0.01200 12.0 0.01114 11.4
8 M 0.010 0.0150 50.0 0.00956 -4.4 0.00900 -10.0
9 M 0.010 0.0150 50.0 0.01013 1.3 0.00949 - 5.1
10 s 0.010 0.0150 50.0 0.01339 33.9 0.01291 29.1
1 M 0.010 0.0150 50.0 0.01077 7.7 0.01047 a7
12 s 0.010 0.0150 50.0 0.01445 445 0.01456 456
13 s 0.010 0.0150 50.0 0.01456 45.6 0.01464 46.4
14 s 6.010 | 0.0150 50.0 0.01400 40.0 0.01389 38.9
15 M 0.010 0.0150 50.0 0.01116 11.6 0.01082 8.2
SHEAR ELEM RMS
ERROR 50.0% 27.8% 27.3%
MEMB ELEM RMS
ERROR 50.0% 6.8% 6.7%

NOTE: S = SHEAR ELEMENT

M = MEMBRANE ELEMENT

SOLID SYMBOLS = EIGENSOLUTION

2ND & 3RD PASSES

1ST PASS OPEN SYMBOLS = PERTURBATION SOLUTION s:zss
SRSS 0.08
0.3 SECOND
) ' ™ pASS
-~ FIRST PASS : < THIRD PASS — =
[
! 0.06
SHAPE
02 SHAPE
SHAPE Q@E g oo
0.1
e 0.02
>
FREQ FREQ FREQ
0 0
) 10 20 0 8
NO. OF ITERATIONS 0 10
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Figure 8. SRSS Errors With Iteration for Case 3



Table 7 shows the frequency errors for all
nine modes for the three passes. The
eigensolution check after pass 2 shows a higher
error than the MVP results, but pass 3 converged
back to the MVP result.

The RMS gage errors, shown in Table 8,
decreased from the initial value of 30.0% for
both shear and membrane elements down to values
of 16.5% and 16.0% after three passes. Slight
error increases were analyzed after pass 2, which
parallels the frequency error increase. Once
again the shear elements exhibited relatively
large gage errors. A third pass helped to
significantly reduce the frequency errors while
only slightly changing the gage errors. The gage
error redistribution permitted a reduction in the
frequency errors. Even for this stringent case,
significant improvement in correlating the

frequencies and mode shapes resulted from the NCP
optimization.

4.5 Case 4 Results

Only one element of the FEM was chosen to
reflect an inadvertent modeling error. The
outboard bottom cover membrane element was
reduced to a gage value of 0.0001 in. with all
other elements having a gage value of 0.01 in.
After the first iteration, the program calculated
a stiffness change factor for this anomalous
element that far exceeded any reasonable maximum
allowable change. The change factor was
calculated to be a value of 60., while the
not-to-exceed value was selected as 1.5. As a
result of this finding, the NCP may conceivably
be used as a tool to detect some of the
significant modeling errors.

TABLE 7. FREQUENCY AND PERCENT ERROR CHANGES FOR CASE 3

MODE| GVT INITIAL FEM PASS 1 PASS 2 PASS 3
NO. {FREQ, HZ | FREQ, HZ | % ERROR {FREQ, HZ | % ERRCR | FREQ, HZ | % ERROR | FREQ, HZ | % ERROR
1 7.562 7.550 -0.2 7.419 -1.9 7.705 1.9 7.590 0.3
2 26.79 28.01 4.5 26.59 -0.7 27.25 1.7 26.78 -0.0
3 36.09 37.07 2.7 35.79 -0.8 36.42 0.9 35.87 -0.6
4 77.64 74.11 -4.5 76.85 -1.0 78.88 1.6 77.15 -0.6
5 156.6 152.0 -2.9 154.5 -1.3 160.9 2.7 156.1 -0.3
6 241.4 255.7 5.9 244.0 1.1 242.6 0.5 240.3 -0.5
7 278.5 268.5 -3.6 275.7 -1.0 285.4 2.5 278.0 -0.2
8 392.7 371.6 -4.4 390.6 -0.5 401.6 23 391.9 -0.2
9 1533. 1387. -9.5 1505. -1.8 1586. 3.5 1540. 0.5
FREERQRRO“RAS 5.01% 0.74% 2.14% 0.41%
SHAPE RMS 8.94% 1.90% 1.61% 1.25%
ERROR
TABLE 8. GAGE AND PERCENT ERROR CHANGES FOR CASE 3
ELEM | TYPE| GVT INITIAL FEM PASS 1 PASS 2 PASS 3
NO. GAGE GAGE |%ERROR| GAGE |[%ERROR| GAGE |%ERROR|] GAGE |% ERROR
1 ] 0.010 0.013 30.0 0.00915 - 85 0.00971 - 2.9 0.00958 - 4.2
2 M 0.010 0.007 -30.0 0.00780 -22.0 0.00901 - 99 0.00843 -15.7
3 ] 0.010 0.013 30.0 0.00990 - 1.0 0.01083 8.3 0.00997 - 03
4 M 0.010 0.007 -30.0 0.00948 - 5.1 0.01057 5.7 0.00972 - 28
5 S 0.010 0.013 30.0 0.01251 25.1 0.01300 30.0 0.01167 16.7
6 S 0.010 0.007 -30.0 0.01007 0.7 0.01077 7.7 0.00993 - 07
7 ] 0.010 0.013 30.0 0.01299 29.9 0.01300 30.0 0.01207 20.7
8 M 0.010 0.007 -30.0 0.01049 4.9 0.01132 13.2 0.01046 4.6
9 M 0.010 0.013 30.0 0.01204 20.4 0.01183 18.3 0.01171 1741
10 S 0.010 0.007 -30.0 0.00912 - 88 0.00917 - 83 0.00894 -10.6
" M 0.010 0.013 30.0 0.00912 - 88 0.00837 -16.3 0.00845 -15.5
12 S 0.010 0.007 -30.0 0.00700 -30.0 0.00700 -30.0 0.00710 -29.0
13 S 0.010 0.013 30.0 0.01088 8.8 0.00998 - 0.2 0.01010 1.0
14 S 0.010 0.007 -30.0 0.00700 -30.0 0.00700 -30.0 0.00720 -28.0
15 M 0.010 0.013 30.0 0.01256 25.6 0.01286 28.6 0.01270 27.0
SHEAR ELEM RMS
ERROR 30% 19.9% 20.6% 16.5%
MEMB ELEM RMS
ERROR 30% 16.7% 16.9% 16.0%

NOTE: S = SHEAR ELEMENT M = MEMBRANE ELEMENT
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4.6 Correlation Using Fewer Number of Modes

The effects of reducing the number of GVT
modes from nine to seven, five and three were
evaluated for a pass 1 only using Case 2 FEM.
Three different number of FEM modes were used:
five, seven, and the complete set of nine. For
five GVT modes and five, seven, and nine FEM
modes, the frequency and percent error changes
are shown in Table 9 along with the
frequency and mode shape RMS errors and the
number of iterations. Similar reduced errors
were calculated for the three sets of modes, but
the number of iterations required reduced from 30
to 17 to nine as the number of modes increased
from five to seven to nine.

Element gage RMS errors tended to be less
with an increased number of test modes and very
little error change occurred by increasing the
number of FEM modes used in the analysis. The
frequency and mode shape RMS errors were
relatively constant with the number of test modes

and the number of analytical modes. See Tables
10, 11, and 12.

5.0 Consideration of Computer Execution Time

Table 13 gives in the case of the four
foregoing cases the CDC 990 (NOS) seconds
execution times for the various CORFEM
calculations including the eigensolution checks
together with the total number of inner loop
iterations required. The table indicates that
the execution times are minimal with about 0.15
cp seconds per iteration for the nine modes of
the cases.

The IBM 3090 MVS/XA, rated at 50 million
instructions per second, was used for the NASTRAN
FEM analysis of a a 1326-SDOF wing model. The cp
seconds for the important calculations are as
follows:

(i) 60 to invert Kg of order 1326.
(ii) 4.5 to invert Kp of order 108.
(iii) 53 to calculate the B matrix.

t
(iv) 30 to calculate B KB per element or

TABLE 9. FREQUENCY AND PERCENT ERROR CHANGES FOR CASE 2 USING 5 GVT MODES AND 5, 7, AND 9 FEM
MODES (PASS 1 ONLY)

MODE GVT INITIAL FEM 5 FEM MODES 7 FEM MODES 9 FEM MODES
NO. FREQ, HZ _|FREQ, HZ | % ERROR | FREQ, HZ | % ERROR | FREQ, HZ | % ERROR | FREQ, HZ | % ERROR

1 7.562 9.097 20.3 7.550 -0.2 7.543 -0.3 7.523 0.5
2 26.79 32.68 22,0 26.79 0.0 26.77 0.1 26.67 -0.4
3 36.09 43.59 20.8 35.87 -0.6 35.99 -0.3 35.92 -0.5
4 77.64 94.74 22.0 78.22 -0.7 78.26 0.8 78.02 0.5
5 156.6 189.9 21.3 159.8 20 159.0 1.5 158.3 1.1
6 — 293.2 — - - 2417 — 240.7 —
7 — 338.9 - — - 283.3 — 282.3 —
8 - 475.8 —_ — — — - 392.1 -
9 - 1826, — — — — — 1530.0 —

FREQ. RMS ERROR 21.3% 1.01% 0.79% 0.64%

SHAPE RMS ERROR 1.02% 0.57% 0.37% 0.40%

NO. OF ITERATIONS _— 30 17 9

TABLE 10. RESULTS OF CORRELATION WITH 7 GVT MODES USING 7 AND 9 FEM MODES
FOR CASE 2 (PASS 1 ONLY)

ELEMENT GVT INITIAL FEM 7 FEM MODES 9 FEM MODES
NO. |TYPE] GAGE | GAGE |%ERROR| GAGE |% ERROR] GAGE |% ERROR
1 s 010 015 500 | 0.01075 75 | 0.01063 6.3
2 m 010 015 500 | 0.00074 26 | 0.00969 .31
3| s 010 015 50.0 | 0.01075 7.5 | o.01058 5.8
a | m 010 015 500 | 0.01020 29 | 0.01045 45
5] s 010 015 500 | 0.01058 58 | 0.01062 8.2
61 s 010 015 500 [ 001117 | 117 | o.o0t06a 6.4
7] s 010 015 50.0 | 0.01251 25.1 0.01191 19.1
gl ™ 010 015 50.0 | 0.00956 -4.4 0.00947 | -5.3
9 lm 010 015 50.0 | 0.01009 0.9 | 0.01003 0.3
10 | s 010 015 500 | 0.01324 | 2324 | 0.01310 | 31.0
1 1 m 010 015 50.0 | 0.01084 84 | 0.01094 9.4
12| s 010 015 500 | 001470 | 470 | 0o01ar3 | a73
1] s 010 015 500 | 001472 | ar2 [ o0o1ar7 | av7
14| s 010 015 500 | 001438 | 438 | 001413 | 413
151 M 010 015 500 | oo1100 | 100 | 001104 | 104
S RMS ERROR 50.0% 30.4% 29.2%
M RMS ERROR 50.0% 5.9% 6.5%
FREQ. RMS ERROR 21.4% 0.31% 0.32%
HAPE ERAOR 0.93% 0.61% 0.63%
NO. OF {TERATIONS — 9 8
S = SHEAR M = MEMBRANE
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TABLE 11. RESULTS OF CORRELATION WITH 5 GVT MODES USING 5, 7, AND 9 FEM MODES FOR CASE 2
(PASS 1 ONLY)

ELEMENT GVT INITIAL FEM 5 FEM MODES 7 FEM MODES 9 FEM MODES
NO. [TYPE] GAGE | GAGE |%ERROR| GAGE |%ERROR| GAGE |%ERROR| GAGE |%ERROR
1] s 010 015 50. | 0.01024 24 | 0.01039 38 | o0.01047 47
2| m 010 015 50. | 0.01073 7.3 | 0.01023 23 | 0.01020 2.0
3]s 010 015 50. | o.01070 70 | 0.01063 63 | 0.01062 6.2
a | m 010 015 50. | 0.01076 7.6 | 0.01080 8.0 | 0.01085 9.5
5 | s 010 015 50. | 001269 | 268 | 001141 | 141 | 001118 | 118
6 | s 010 015 50. | oo1189 | 189 | 001153 | 1563 | oo1114 | 114
7| s 010 015 50. | o.0ta9a | 494 | 001330 | 330 | 001266 | 266
8 | ™ 010 015 50. | 0.01003 03 | 0.01019 19 | o.01008 0.8
o | ™ 010 015 50. 0.01044 44 | 0.01031 31 | 0.01012 1.2
10 | s 010 015 50. | 001442 | 4a2 | o0o01350 | 350 | 001311 | 31
1| m 010 015 50. | 0.01031 31 | 0.01054 54 | 0.01085 5.5
2] s 010 015 s0. | 001442 | 442 | 001408 | 408 | 001392 | 392
13| s 010 015 50. | 001438 | 438 | 0.01409 | 409 | 001396 | 396
14 | s 010 015 50. | 001325 | 325 | 001354 | 354 | 001339 | 339
15 | M 010 015 50. | 0.01036 36 | 0.01080 80 | 0.01081 8.1
S RMS ERROR 50.0 % 38.1% 28.7% 26.4%
M RMS ERROR 50.0 % 5.1% 5.4% 5.7%
FREQ. RMS ERROR 21.3 % 1.01% 0.79% 0.64%
SHAPE RMS ERROR 1.02% 0.57% 0.37% 0.40%
NO. OF ITERATIONS - 30 17 9
S = SHEAR M = MEMBRANE

TABLE 12. RESULTS OF CORRELATION WITH 3 GVT MODES USING 5, 7, AND 9 FEM MODES FOR CASE 2
(PASS 1 ONLY)

ELEMENT GVT INITIAL FEM 5 FEM MODES 7 FEM MODES 9 FEM MODES
NO. | TYPE | GAGE GAGE |%ERROR] GAGE |%ERROR| GAGE |%ERROR| GAGE |% ERROR
1 S .010 015 50.0 0.01199 19.9 0.01195 19.5 0.01194 19.4
2 M 010 015 50.0 0.01038 3.8 0.01042 4.2 0.01042 4.2
3 ] 010 015 50.0 0.01127 127 0.01126 12.6 0.01126 12.6
4 M 010 015 50.0 0.01226 22.6 0.01217 21.7 0.01216 21.6
5 S 010 015 50.0 0.01353 35.3 0.01346 34.6 0.01345 34.5
6 S 010 015 50.0 0.01366 36.6 0.01362 36.2 0.01362 36.2
7 S 010 015 50.0 0.01383 38.3 0.01378 37.8 0.01377 37.7
8 M 010 015 50.0 0.01214 214 0.01202 20.2 0.01203 20.3
9 M 010 .015 50.0 0.00969 3.1 0.00965 3.5 0.00965 3.5
10 S 010 015 50.0 0.01423 42.3 0.01418 41.8 0.01419 41.9
1 M 010 015 50.0 0.01001 0.1 0.01004 0.4 0.01005 0.5
12 S 010 015 50.0 0.01500 50.0 0.01500 50.0 0.01500 50.0
13 ] .010 015 50.0 0.01497 49.7 0.01497 49.7 0.01498 49.8
14 S 010 015 50.0 0.01475 47.5 0.01466 45.6 0.01466 46.6
15 M 010 015 50.0 0.01046 4.6 0.01047 4.7 0.01047 4.7
S RMS ERROR 50.0% 38.9% 38.5% 38.5%
M RMS ERROR 50.0% 13.0% 12.5% 12.5%
FREQ. RMS ERROR 21.0% 1.46% 1.37% 1.37%
SHAPE RMS ERROR 1.17% 0.48% 0.51% 0.51%
NO. OF ITERATIONS — 30 30 30
S = SHEAR M = MEMBRANE

substructure,where generation of each Kg
costs about 11 seconds.
See Bq. (A.9) of Appendix A.

The same model for 25 substructural elements, 108
DDOF, and 10 modes required 7 cp seconds to
generate the generalized stiffness matrices and 1
cp second to calculate the derivatives on the CDC
990 (NOS/VE)

computer.

Such costs can be extrapolated to develop a
substructuring strategy, i.e., the number of
substructures to be optimized. This is
particularly important in the case of large
structures because the optimization costs depend

on the number of FEM passes, the number of

unknowns to be optimized, the number of modes to
correlate, and the foregoing cost breakdown.
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TABLE 13. CDC 990 EXECUTION TIME

PASS
CASE 1 2 3 CHECK

NO. | TIME | NO. JTIME | NO. | TIME | TIME
ITER | SEC | ITER | SEC | ITER | SEC SEC

1 6 1.9 6 2.6 - — 0.6

2 8 2.6 12 2.8 — —_ 0.6

3 25 4.8 10 2.6 8 2.8 0.6

4 1 1.3 — -_ — —_— -




6.0 Conclusions

A new and practical method (CORFEM) using
first and higher order Van de Vooren perturbation
formulae has been developed to efficiently and
reliably correlate calculated frequencies and
mode shapes with those of the corresponding
measured natural modes by modifying the stiffness
of the elements of the finite element model. The
perturbation method effectively approximates the
frequency and mode shape derivatives of each
element and also the eigensolutions of the
structure at the modal level. A gradient search
algorithm modifies the elements within reasonable
bounds and converges in incremental steps to an
acceptable correlation. The eigensolution with
the updated FEM verifies the results.

Both the analytical and test models of a
wing torque box were generated using a NASTRAN
coded structure to demonstrate CORFEM.
Correlations were obtained for all nine modes of
the system and for reduced numbers of modes. For
the examples analyzed, the program converged to
frequencies, mode shapes, and element gages
within acceptable tolerances.

Because the Van de Vooren approach avoids
complete FEM eigenvalue analysis to calculate
frequency and mode shape derivatives and is more
accurate than the Taylor series type linearization
of constraints employed by conventional mathe-
matical programming formulations, it application
to large structures looks promising, notwith-
standing the Virtual Work limitations and that the
structure be statically determinate and internal
load redistribution due to resizing or stiffness
modification moderate. However, further work
needs to be done to evaluate CORFEM for large FEM's
and for actual test data. 1In addition, the effects
of modifying the mass as well as the stiffness of
the elements should be included in the method.
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DERIVATION OF COORDINATE TRANSFOR-

MATION FROM DYNAMIC TO STRUCTURAL DOF

Let Qg, Kg, and gg be the structrual
loads, stiffness matrix, and deflections in the
global structural DOF system such that

Qg =Kgay (A.1)
The matrix Ks can be inverted to obtain:
-1
a, =Kg Qg (A.2)
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By means of an appropriate load distribution, T,
a relationship between the structural and dynamic
loads can be established, as follows:

Q= TQ,

s (A.3)

From the principle of equal work, the transpose of
matrix T applies to the structural and dynamic
deflections, a and qD:

t

Tag (A.4)



Substitution of Bq. (A.3) into Eq. (A.2) and that
result into Eq. (A.4) yields the dynamic
flexibility matrix,

-1 t -1
K =T K T (A.5)
D s
The inverse of the dynamic flexibility matrix,
Kp, can be expressed as follows:
Q =K q (A.6
D DD )

Substituting BEq. (A.3) and Eq. (A.6) into Eq.
(A.2) yields an expression transforming the
dynamic DOF to the structural DOF, as shown below:

(A.7)

The transpose of the transformation matrix, B, is:

t -1
B =K TK
s D

(A.8)

The structural mass and stiffness matrices, Mg
and Kg, are transformed from the structural DOF
to the dynamic DOF as follows:

t t
M =BMB, and K =BKB
D s D ]

(A.9)

APPENDIX B - ORTHOGONALIZATION OF MEASURED MODES

For a conservative system the summation of
forces (X F) and moments (X Mom) are zero. For
the symmetric boundary conditions, these
summations can be written in matrix form for the
ith mode (Vi) of the test.

ZF

tr2
{1} [wu - K] {v i 0 (B.1)
1

Z Mom

{x}t[wzu -kl V1= 0 (2

1

where M = mass matrix (may contain aeorodynamic
forces)

stiffness matrix

test mode frequency

longitudinal distances from reference
axis to test points

{ } = column vector

K
w
X

N

Because of the inaccuracies in the raw data
these conditions my not be met exactly. The
reference axis of the rigid body modes is shifted
to balance these equations.

Let R = [wZM —K] , then
t
{1} R({vi+r {1} +r {x}) = 0(B.3)
i 1i 2i
t
f{x} R({vi+r {1} +r {x}) = 0(B.4)
i 1i 2i

The r's are unknown scalars that can be
determined from the solution of the simultaneous
Eq. (B.3) and Eq. (B.4) for each mode. The
parenthesized terms on the left side of Eq. (B.3)
and Eq. (B.4). represent the modified ith mode
required to balance the forces and moments. If
the change is small with respect to the original
mode values (if a small shift in axis is
computed), then the input data can be considered
adequate for further processing.
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The forces and moments to be balanced for
the antisymmetric boundary conditions include the
side forces, rolling moments, and yawing
moments. These can be balanced in a similar
fashion as the forces and moments of the
symmetric case.

Having achieved the balance of forces and
moments, the modes may next be orthogonalized.
Vibrating structures can have an infinite number
of natural modes which are said to be orthogonal
with respect to a weighting function, the mass
matrix of the structure. Orthogonal modes imply
that the product of the forces in one mode and
the displacements in another mode when summed up
over the entire moving structure is zero.
Expressed mathematically:

U/"v v ds =0
L]

= deflections in mode i

1#] (B.5)

where v
i

v

J

ds = incremental mass

deflections in mode j

In matrix form the orthogonality condition
is expressible in terms of the generalized mass
matrix, my.

t
= (B.6)
[ml] v MVl
The equations of motion using the
generalized mass matrix can be written as:
2 -1
q = w?\i tm] [my] a (B.7)
-1
where|m,] = inverse of diagonal elements of [m ]
ki = roots related to the test frequencies
@ = eigenvalue of the solution



If [m] in Eq. (B.6) is diagonal with zero
values for the off diagonal elements, the
solution to Bq. (B.7) is trivial. However,
because of experimental inaccuracies in measuring
the mode shape, [mj] will not be exactly

diagonal. The eigensolution to Eq. (B.7) will
yield orthogonal modes which can be compared with
the raw mode shapes and frequencies for
consistency.

APPENDIX C - MODIFIED VAN DE VOOREN
PERTURBATION METHOD

The basic harmonic equations of motion for a
structural system are:

(KX-G) v=0 (c.1)

where K
G

0ou

square symmetric stiffness matrix
square symmetric matrix of mass terms
plus aerodynamic terms, that may be
complex and unsymmetric

root or eigenvalue

A
v = mode shape or eigenvector

The solutions to Eq. (C.1) are A, a diagonal
matrix of roots, and V, a square matrix of mode
shapes, the ith column of which is associated
with the ith value of Aj.

The transposed set of equations to Eq. (C.1)
are:

t
KA -Glu=0 (c.2)
The solutions to Eq. (C.2) are .A., the same
roots as for EBq. (C.1), and U, a square matrix of
mode shapes, the ith column of which is
associated with the ith value of Aj.

The biorthogonality conditions use the
solution to Eq. (C.1) and (C.2) to give

t t
(U KVA -U GV)=0 (c.3)

t t ot
(VKUA-VGU)=0 (c.4)

Single out the jth mode of U and the ith mode of
V, the

t t
flul kv ~{uleivl=0(pq
h] 1 1 b 1
{ }t fu} { }t {u}
viKtu}l A ~{vicgful==2
; i N i 3 (c.6)

where { } = column vector

Subtract Eq. (C.6) from Eq. (C.5).

t t
{u} Kiv }rx~i{v } kiu } 2 =
i i i i i 3

t t
fu} 6{v }-iv } 6lu} (C.7)
1 1

3 ]

Note that the scalar results of the triple matrix
products are equal.

t t
{fulR{fv}l={v1kfu}=a (c.s)
j i i j
t tt
fulGivli={vicgi{ul=>» (c.9)
j i i i
Bq. (C.7) can be rewritten as follows:
a(dA-2)=0 (C.10)
1 J
For i # j,a =0and b =0, since (A- A) # 0.

1]

For i = j, ) =b/a, since a # 0 and b # 0.
i

Let k = Ut KVand g = Ut GV, then k and ¢
must be diagonal matrices.

Convert to the generalized coordinates (q).

v=Vq (c.11)
Substitute Eq. (C.11) into Eq. (C.1) and
premultiply by Ut.
(ka- g)g=0 (C.12)
From Eq. (C.5) k =g-A , so that
k(A-A)qg=20 (€.13)

The solutions to Eq. {C.13) yield the normal modes.

For A= ) q=4 6 =0 i# 3
i ij ij
§ =1 i=3
ij
where 3 = Kronecker's delta
ij

Now apply the transformation of Eq. (C.11) to a
change in stiffness (A X) and a change in the G
matrix (AG).

t t
let « = U(AGWV and B =U (AK)V,
then, from Eq. (C.13)

[k (A-A)+gA-a)q=0 (C.14)
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The root and generalized mode solution for Eq.
(C.14) for the ith mode are:

A= A A
i i
(C.15)
a =ty +p
n n o n
where AA "= change in A
i i
Pji = change in generalized coordinate

By using a three mode set of equations, the
perturbation solutions can be better visualized.
The matrix Eq. (C.16) represents such a system
including the changes in K and G, as an expansion
of Eq. (C.14].

kK {(A-A)+3 \-a B A~a B ATa 9 |

11 1 11 11 12 12 13 13 1] 0

B A-a kK (A=A )48 A-a A~a q

21 21 22 2 22 22 ﬁ23 23 2 (C' 16)
B i« B A~ kK {(A»A)+8 A-a q

31 31 32 32 33 3 33 33 3

Substitute the solutions of Eq. (C.14) into Eq.
(C.16) to give three sets of matrix equations,
one for each mode.

For mode 1: (c.17)
k A +8
A+ Y ~a Y- a Yy-a 1 =0
11 1 111 11 Blz 112 A3t 3
Y-a kK (Y-A)+8 ¥ -« Y -a P
/321 121 22 1 2 221 22 '923 1 23 21
y-a Y -a k (y=Ar)+g v ~a P
Bsx 13 F2'1 32 331 3 Baa 1 33 a1
For mode 2: (C.18)
—
k (y-A)+8 y-a Y -a y -a P E
11 2 1 112 1n sz 2 12 A3z 13 12
y-a kK AA+ 7 ~« Y -a 1
'921 2 21 22 2 pzz z 22 ﬁza 2 23
A Y-a B Y-a kK (Y=A)+8 7-2a P
312 31 322 32 33 2 3 33 2 33 32
For mode 3: (C.19)
k (Vv=A)+g 7 ~a B ?-a B Y-a P =0
11 3 1 113 11 12 3 12 133 13 13
B ry-a kK (Y-A)+g ?-a B r-a p
213 21 22 3 2 223 22 233 23 23
B ¥-a y-a k AA+8 7 -« 1
213 31 ﬁsz 3 3 33 3 ﬂsa 3 33
Y=\ tar, Y= A+AN Y =A+4M
where 11 1 2 2 2 3 Y%

Assume a stiffness change only (=« =0) and
the mode shapes are orthonormalized (g=I), then
to a first order of approximation (terms higher
than first order are neglected), the general
expression for change in the roots and
generalized mode shapes are:

AN =-A B (k +B8 ) (C.20)
i i i1 ii 1i
p_=1.0
ii (c.21)
-1 -1
P . ="B (& +B -y )
1] 13 ii ii 3 i#5

The ¥ of Eq. (C.21) uses the AX of Eq. (C.20).

Two recursive methods are available for the
second and higher order approximations. The
general expression for the Recursive 1 method for
changes in the roots and generalized mode shapes
are found by using the implicit values for the
roots to a previous order of approximation in the
expanded Eq. (C.16), as follows:

(4x)
1

P = 1.0
11
p ) =
ijr
n
_EEHE

ij S=lﬁi5

where r
i

-1
=G 8D

T il i3

(B2 00 F800,0,] 199
TR TR ()

(C.23)

-1
(p ):Hf +8 -(A)] S#i,j; i#3
S3ie ii i ir

order of approximation
r-1

n = number of system modes

The Recursive 2 method for the second and higher
order approximations uses the explicit expansion
of Bq. (C.16) to yield the following expression

for the second order of approximation:

(4\) =-AxZBp /(k *£8 © ) i#j
i2 i ij ji il iy ji
(C.24)

The generalized mode shape calculations
require the solution of a linear set of
equations, one set for each mode. Although this
procedure requires fewer iterations than for
Recursive 1, the computer cost may be higher; and
as shown in Table 1, there may be no need to
proceed beyond the calculation of the second
order approximation to the roots. Note in both
recursive methods, the previous order roots and
mode shapes are used for the next higher order,
in order to accelerate convergence.

The first order Van de Vooren formulae were
accurate enough to obtain derivatives of the
frequencies and mode shapes in order to achieve
convergence to a local minimum for the examples
presented. Recursive 1 Van de Vooren formulae
solutions are about 21 times more cost-effective
than Jacobi method eigensolutions when solving
all nine mass-orthonormal modes of the
illustrative examples of Section 4.
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