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Abstract

This paper deals with a dynamic stability
analysis of transversely-isotropic viscoelastic
flat plates subjected to in-plane bi-axial edge
load systems. In deriving the associated govern-
ing equations a Boltzmann hereditary constitutive
law was used and in addition, transverse shear
deformation, transverse normal stress and
rotatory inertia effects were incorporated. The
integro-differential equations governing the
stability of simply-supported flat plates is
solved by using the integral transform techni-
que. Its solution concerns the determination of
the critical in-plane edge loads yielding with
the asymptotic instability of flat plates. While
studying this problem the general dynamic stabil-
ity solutions are compared with the ones based on
the first order transverse shear deformation
theory and with their quasi-static counter-
parts. Numerical applications are presented and
pertinent conclusions are formulated.

I. Introduction

Fiber-reinforced composites have gained
increasing attention in recent years. This
attention is due to their widespread use in the
design of primary and secondary load bearing
structural members, where the requirement of high
strength/stiffness to weight ratio is of a vital
importance. Such applications include, e.g., the
high-speed aircraft and aerospace structures,
rocket engines, turbine blades, etc. Due to the
high temperature gradients experienced by these
structures, their constituent materials exhibit
time-dependent properties which could be modelled
by a linear (or nonlinear) constitutive law.

In addition, the composite material struc-
tures exhibit a weak rigidity in transverse shear
which requires the incorporation of transverse
shear deformation effects.

The stability of transversely-isotropic
viscoelastic panels undergoing cylindrical
bending was analyzed by Malmeister et al. [1] for
the case when the composite exhibits viscoelastic
properties in transverse shear direction only.
Wilson and Vinson [2] analyse the stability of
rectangular, viscoelastic, orthotropic plates
subjected to biaxial compression. ~In their
analysis, the equations governing the stability
are obtained by using the quasi-elastic
approximation, which overlooks the hereditary
material behavior. Sims [3] performs a similar
quasi-elastic analysis of the problem thereby
implying an instantaneous time-dependent material
behavior as opposed to the actual hereditary
constitutive law.

In this study a method of analyzing the
linearized dynamic stability of viscoelastic
transversely-isotropic plates subjected to
biaxially compressive load systems is developed.
As is well known, due to their exotic properties,
the transversely-isotropic materials (as e.g.,
the pyrolitic-graphite one) are used in com-
ponents of various space vehicles for thermal
protection purposes. An exact dynamic approach
is used throughout the treatment of the stability
problem. The material behavior is modelled
through a 3-D linearly viscoelastic, hereditary,
constitutive Taw (i.e., the Boltzmann hereditary
law). Effects of transverse shear deformations
(which are highly pronounced for materials
exhibiting high degrees of anisotropy and/or for
non-thin plates) have been incorporated into the
analysis. Emphasis is also given to the effect
of the transverse normal stress, o,,, which was
overlooked by the previous investiagtors.

By using the elastic-viscoelastic corres-
pondence principle, the equations governing the
stability of viscoelastic transversely-isotropic
flat panels are derived starting with their elas-
tic counterparts (considered in [4]). As in the
elastic case [4], the equations governing the
dynamic stability of viscoelastic transversely-
isotropic plates may be recast into two
independent ones, i.e., one defining the basic
state of stress, and the other one describing the
boundary-layer solution. The integro-
differential equations governing the stability of
plates is used in the Laplace transformed space,
this yielding the characteristic equation for the
time dependent part of the transverse
displacement function. The asymptotic stability
behavior of the plate is studied here as an
eigenvalue problem.

The analysis is performed in the framework
of a third order transverse shear deformation
theory (TSDT) and of its first order counterpart
(FSDT). Then, employing the single equation
(representing the interior solution discussed
above) it has been shown that for an isotropic
plate, the results obtained by solving the exact
system of three coupled equations fully agree
with the solution obtained via the single equa-
tion. This result constitutes an extension for
the viscoelastic case of its elastic counterpart
obtained in [4]. Comparison studies between the
TSDT, FSDT and the classical Kirchhoff theory of
plates are also presented.

1I. Preliminaries
The case of a flat plate of uniform thick-

ness h is considered. By S, we denote the upper
and lower bounding planes of the plate, symmetri-
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cally located with respect to its mid-plane o.

The points of the 3-D space of the plate
will be referred to a rectangular Cartesian sys-
tem of coordinates Xj . Where x (¢ = 1,2) denote
the in-plane coordinates, X3 bging the coordinate
normal to the planme x3 = 0.  Throughout the anal-
ysis (unless otherwise stated) the Einsteinian
summation convention is employed where the Greek
indices range from 1 to 2, while the Latin
indices range from 1 to 3.

I11. Basic Equations

Geometric Equations

The higher-order theory of plates is
developed by using the following representation
of the displacement field across the thickness of
the plate [4]:

N )
I (xg)" v [x ,t] (1)

V [x ,xq,t] =
a w3 n=0

R a(n)
V3[xa,x3,t] = nzo (XB) va[xwyt] (2)

The numbers N and R denote two natural numbers
identifying the truncation levels in the dis-
placement expansion. At this point it is worth-
while to note that in Egs. (1) and (2) the terms
corresponding to the stretching state of stress

{2r) (2r+1)
are Va s V3 and those corresponding to the
(2r+l) (2r)
bending state are Va and v3 .

For a third-order bending thedry which
retains the assumption of the inextensibility of
the transverse normal elements, the following
representation for the 3-D displacement compo-
nents may be postulated

(1) 3(3)
« %3 va * (x3) va (3)
(0)
V3=V, (4)
where
(n) (n)
Vi= Vg [xat] (5)

It is worthwhile to note at this stage, that the
above representation of V_ allows one to fulfill
the static boundary condifions on the external
bounding planes. The linear strain tensor is
written as,

&y X 1xq,t] = %-(vi’j +V (6)

ij*%a

IRL

Introducing the displacement expansions (3) and
(4) into (6) we obtain for the strain components
the expressions
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(1) (1) 3 (3) (3)
2ea3 = x3( Va,s + vB,a) + (x3) ( Vm,6 + VB,a)
(1) 2(3) (0)
Zea3 = Va + 3(x3) va + v3’a (7)
e33 = 0

Constitutive Equations

Employment of the superposition principle
for a linear viscoelastic material results in the
constitutive law involving the Stieltjes convolu-
tion. This relates the time dependent stresses
to the time varying input strains {or vice-
versa). The derivation considers the input
strains (or stresses) to be a superposition of
Heaviside functions with various step sizes and
in addition that the behavior is causal.

The resulting constitutive law for a
linearly viscoelastic anisotropic material in a
3-D state of stress is (see Malmeister [1]):

t .

“ij[t] = e  [tIE, . [0] + [sle,, [t - slds

(8)

ijmn IO Eijmn

where the first term in (8) represents the
elastic part of the constitutive law. Taking the
Laplace transform with respect to time of Eq. (8)
we obtain .

% " S'Eijmnemn (9)
where an overbar affecting a quantity denotes its
Laplace transform (L.T.) with s as LT variable.

The elastic counterpart of the constitutive equa-
tions (8) may be expressed in the following con-

venient form:
%8 = Eapunfun ¥ SaF4p33%33 (10)
93 = 23383
where, (see e.g., Librescu [4]):
~ E E
. ag33 33um
Fapon ~ Fopun 3333 (11)
ol Eag33

Eaﬁ33 = E3333

In Eq. (10) 6 is a tracer identifying the
presence of O33¢ It takes the values 0 or 1,
according to whether this influence is ignored or
included.

Equations of Motion

The equations of motion for a 3-D linear
elastic continuum are as follows:

+ +
° 93,3 * = °Yy

aB,B (12)

613,1 + 023,2 + 033,3 + = pVB



where p is the mass density of the medium while
the overdots denote time derivatives.

Thg stability problem when formulated in
terms of displacement may be reduced to a system

(1)
of equations in three unknown quantities, Va,and

(0)

V3. In order to obtain the governing equations

in terms of these displacement quantities three
macroscopic equations of motion are needed. To
this end, following [4], we consider the moment
of order one of the first two equations of motion
(12)1 and the moment of order zero of the third
equation (12),.

The moment of order one of (12)1 yields:

(1) {0) (1)

LaB,B - L 3= 6c f (13)
where the general definitions of moment
resultants and force resultants are given by:

(n) . +h/2 n

L oIxyux,,t] = o (x,) dx

af-"1*"2 -h/2 ag'™3 3
(n) c +h/2 n
L alxq.x,,t] = 6 _o{x5) dx
a3-"12"2 -h/2 «3'"3 3
(n) *he oo
falxysxpst] = I-h/z oV, (x5) Tdxg (14)

In Eq. (13) &_ is a tracer which identifies the
presenc? gr absence of rotary inertia terms
n

(i.e., f_) by taking values 1 and 0, respec-

(1) (0)

tively. In order to represent La and Lm3

B
(1) (0)

in terms of Va and V3 we use the constitutive

<

taw (i.e., Eqs. (10)) and strain-displacement
relations (given by Eqs. (7)) into the above

(1)

expressions for the stress couples, Laa, and

(0)
stress resultants, La3. In addition, having in
view the expression of O3 obtained through the
integration over the segment [0,x3) of the third
equation of motion (12), (see [4]) and by deter-

(3)

mining the expression of Va

(1) (0) (3)

Va and V3, i.e., Va = -

in terms of

. O
5;?'( V3,a * Va)

(obtained through the fulfiliment of static con-
ditions on the bounding planes x5 = th/2 (see

[7])), we derive the governing equations in terms
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(1)

of the basic variables Va

of transversely-isotropic plates (the plane of
isotropy at each point being assumed parallel to
the mid-plane of the plate) the pertinent
governing equations may be obtained by converting
the elastic coefficients for the anisotropic
plate (appearing in Eqs. (10)) to the case of a
transversely~isotropic one. This convertion may
be achieved by using the relations presented in
[47, and thus, we obtain:

(0)

and V3. For the case

0 (1) (1)
- “E"ii (v; +2 Elii#l—%L v - v, 1]
1 - m ,(1(18 (1 - u ) (JJ,NB B’pp
(1) (1) -
4F 40 ., u'EG
Tz Ve T 28 Ve AT
(0) (1) s0 ., ()
“DVapt el ~ 2 Vi
sg (0 (D) )
toerTl o Vae T Ysp e Pl O
(15)

In Eq. (15), E, p, G (=E/2(1 + p)) and E', p'
G', denote the Young's modulus, Poisson's ratio
and shear modulus, corresponding to the plane of
isotropy and to the plane normal to the isotropy
plane, respectively, while, the tracer 68

identifies the dynamic effect of o33¢ Upon con-

sidering the zeroth order moment of the third
equation of motion (i.e., Eq. (12),), we obtain:

(0) (0) (0)

L + Py - 5Uph V3 =0 (16)

a3,

where the general definition of the transverse
(n)
force resultant P3 is

(n)

n
palxyXpst] = (ogq(x3)M | 1172

-h/2

while the tracer 60 identifies the effect of the

transverse inertia term. Employment of the con-

stitutive lTaw and strain-displacement equations
(0) .

for the force resultants ch3 and convertion of

the resulting governing equation to the case of a
transversely-isotropic medium, yields:

1 (0 3 (0 5, (0
Vow® V3, tETP3 T SpzET V3t 0
(17)

Equations (15) and (17) are the requested three
governing equations of motion in bending of an
elastic, transversely-isotropic, flat plate
(TSDT).

The counterparts of Eqs. (15) and (17) for
the FSDT may be obtained by postulating the
following representation of the displacement



field:

{1)
X3 Va

(0)

PV vy (18)

3:

In addition, disregarding the influence of 34 in

the constitutive equations (10) and making use of
the general procedure outlined for the TSDT, we
obtain the following governing equations for the
bending theory of elastic, transversely-isotropic
flat-plates [4]:

p3 (1) (1) nd e (1)
—?'G[ Vo, " Vol "I T Vi
2 () (0 (1)
- hk®G'[ V‘3 + V3,B] - 6Cm1 Vﬁ =0 (19)
1 (0 (0) (0)
Voo T Vaee Sz V3t izgy P3O
(20)

In Eqs. (19) and (20), k2 denotes the transverse
shear correction factor which is associated with

the FSOT while m = ph’/12; m_ = ph.

Alternative Representation of the Governing
Equations (19,20) for the FSDT Theory

For the case of a transversely-isotropic
medium, it may readily be shown that by intro-
ducing a suitable potential function @[xl,xz,t],

in which terms the displacement components

(1)
vV, are expressed, the Eqgs. (19,20) may be

reduced exactly to the form in which the two
states of stress (viz, the interior solution and
the boundary layer effect), appear in a decoupled
form (see [4-6] for details) follows.

- ﬁg»—gg—— b, t O+ ~—;l— 6=0 (21)
12260 " Chk?g
) b;___ﬁ____ ‘3’ ﬁ B
(0) (0) (6> (0)
* (8gmg V3,8 = P3,ga) * 5cM V3 g5+ P3
s.m (0) X (b\;) (0)
+ Py = &nM - 6 Sm.m_V, =0
hKZG' 3 D% '3 hK G' D" 1% '3 °

(22)

Thus, the equations governing the motion of elas-
tic, transversely-isotropic plates can be recast
into two independent equations i.e., one
governing the basic state of stress, i.e., the
interior solution (22) and the latter one
governing the boundary layer solution (21).
Similarly we may obtain the counterparts of (21)
and (22) for the TSDT. Here it is worthwhile to
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note that the de-coupled system of equations for
the FSDT coincides with that for the TSDT when
the transverse shear correction factor K2 > %-in
the FSDT and the transverse normal stress is
neglected in the TSDT (i.e., 8y = 8 = 0).

IV. Derivation of Equations Governing the
Stability of Viscoelastic Transversely-
Isotropic Flat Plates

The equations governing the stability of
flat plates may be derived by starting with the
equations of motion of a continuum undergoing
finite deformations (see Chandiramani [10]).
However, as an alternative procedure the stabil-
ity equations may be formally obtained by
replacing in the previous governing equations

(0 (o) (0) (0) (0) (0)
Py wWith py+ Ly Vg 1+ Loy V390
(0} (0) (0) (o) (0)
+ 2 le V3,12 (see [5]), where L11’ L22 and le

play the role of uniform (in space but depending
possibly on time) edge loads, considered positive
in extension. Furthermore, the viscoelastic
counterparts of the elastic stability equations
can be obtained by employing the elastic-
viscoelastic correspondence principle (C.P.) for
linear viscoelasticity. This principle states
that the L.T. of the governing equations for a
viscoelastic continuum can be obtained by taking
the Laplace transform of the corresponding
governing equations of an elastic continuum and
then replacing the moduli and compliances by
their Carson transforms.

Equations Governing the Stability of Viscoelastic

Flat Plates Using a Third Order Refined Theory

(TSDT)

Following the procedure outlined above and
making use of the C.P. in Egs. (15) and (17) the
L.T. of the equations governing the stability of
viscoelastic, transversely-isotropic, flat plates
write as

(D) % (D (T (1)
A A AR I I
(77 PR ) (M) (0)
40 40
- ;—2- ﬁ - 46AC4£ V3 JANB + Vv ,B}\] - F \/3’s
. (0) (1) (0) '
+ 555Cap Vs o - PBLA Vg - Vp 10 (23)
(T) (0) 3 % (0) (0) (0)
Voo ¥ V3,0 t 2R Tl pg + L Ly V311
© (© (0) (0) (0
* ol V30t 2Ly V3 ] -5 el V3= 0
(24)



where,

-k
c1[t3=L‘1{§§_¢} A I (é—f)}
¢ty = L L _E )} (25)
3 2s (’-\1 (1 - ;*) )
Cyltd = L-l{é.E:?Ei_E;—;g*; Cglt] = L-l{%'ﬁztz}
i

In Eqs. (23)-(24) an overbar (~) followed by a
star {*) denotes Carson transform while ¢ denotes
a dummy time variable. In the forthcoming
developments these equations will be used in the
stability analysis of viscoelastic, transversely-
isotropic, flat plates in the framework of the
TSDT. Henceforth the case of constant, inplane,
edge loads is considered and so

(0) (0) (0) (0) {(0) (0)
baled > Ly Lpled > Ly, 0 LIt) > Ly,

(26)
(0) (0) (0)
where Lll’ L22, L12 take on the meaning of

constant applied edge loads.

It is essential at this point to note that
(0)
the transverse load p3[t] represents a forcing

function which is required in a dynamic response
analysis. However, in a Tinear stability analy-

(0)
sis, P3 is not required. Similarly, the initial

conditions for the displacement field do not
affect the stability which is a characteristic of
the system itself and hence, together with

(0)
Py they may be dropped (see [6]).

Boundary Conditions

The equations displayed before represent
sixth order governing equation systems. Their
solution must be determined in conjunction with
the prescribed boundary conditions (which are in
number of three at each edge). For a simply
supported plate, (hinged-free in the normal
direction), the following boundary conditions are
to be satisfied

1)y (o) (1)
v

Vp= V3= Ly =0atx =0,

(27)
(1) (o) (1)
V= V3= Ly, =0atx, =0,

Stability Analysis Using the Third Order
Transverse Shear Deformation Theory (15D7)

As was noted previously the solution of the
equations governing the stability of simply
supported plates requires the fulfillment of the

boundary conditions (27). To this end, the
following representation of the displacement

(1)

(0)
field Va[xm,t] and V3[xw,t] is postulated:

(1) w @
V. = ¥ 7 A_cos[r_x,Jsin[an x,]f [t]
1 e pep ™ m”1 n"2-"mn
. % % : SIn x,0F_[t]
v, = m§1 nzl Bin svn[xmxl]cos A% Xf
(0) o= = ] ] e
Vg = T T Cpnsinla x Isinla x,Jf
m=1 n=1
(28)
where Am = mn/Ll, A, = nn/L2 and Amn’ an, Con

are constants representing the amplitudes of the
displacement quantities. The stability will be
analyzed in L.T. space. For this purpose Eq§.
(23) and (24), will be considered. Introducing
L.T. of (28) into Eq. (23) corresonding to the
free index B = 1 yields the following equation

mzl n§1<Vanf53?an + T [s])cos[A x, IsinlA _x,1 = 0
(29)

where,

- 2 2 40 .2
Y [s1= A [4T - sﬁgxm AR

2 -
- 48 ps ]+ an[4thmxn - BE;Amxn + 45Ac4xmxn]

* 2 #0302
+ 0 2003 + 8 a8) + 45, T, 00 + 4 M2) (30)

40 2 2
- ;?-xm + 5p63§;S Ay = 488N ]

Tﬁn[s] = {Amn[46cp] +CoiL- 8.Phy
- 508 T} sf, (01 + [0}

The equation corresonding to the free index g = 2
can be obtained from Eq. (29) by replacing M by

A, and Ay, by By, (and vice versa). Examining

(30) (and its counterpart for the iqdex g =2),
we infer that due to the orthogona11t¥ of the
sine and cosine functions, one may write:

Tﬁn[s]?hn[53 +,Tﬁn[sj =0 (31)

As was noted earlier, the stability of a linear
dynamical system (of the type_repqesented_by

(32)) does not depend on the initial conditons
(i.e., Imn[s]) but is simply determined by the

nature of its impulse response i.e.,
c n[s])'l}). Thus one of the stability
m
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equations writes:
Ymn[S] =

(the second one being its counterpart for the
index B = 2). Now introducing (29) into (24) for
the case of uniform bi-axial compression (i.e.,
(0) (0) (0)
bip = oM Lap = %M Ly <

I I

m=1 n=1

(32)

h, 0) we obtain,

n[SJ?ﬁn[SJ + jﬁnESJ)Sintkmxl]Si"Eanzj

=0 (33)

where

- 3
onbsT = AL Ao+ B +cmn[xm+x 75;{ 11"

ETLARE L
Tonls] = - € [sf [0] + 4 [0]]

A similar reasoning as above yields:
wmn[s] =

Equations (33) (and its counterpart for the

index B = 2) together with Eq. (35) are the equa-
tions governing the stability problem. This set
of three equations represents a homogeneous sys-
tem of equations in terms of the unknown ampli-
tudes Apns Bpns Cpn (which take the role of the

eigenvector). Thus, using (32) and (34) in con-
junction with (30) and (34), allows one to write
this system of homogeneous equations in the
following form,

(34)

iy Tip Lz \Ag
L1 Iy Ip3 m{ =0 (35)
131 I3 I3 mn
where
* 2
= 41' x - Bt*x "Z + 45Af4"m - 48 ps
*
212 = 4t1xmx - 8?5 Ak + 48 mexn
_ o7*.3 2 3 2
Li3= ZC3(}‘m * kmhn) * 45A52(*m * Amkn)
- ;2 Ay + 5085 T; s Ay - 48 5%\, (36)
o2 2 40 * 2
Z22 = 4'C'1xm - st;xn - -h-f + 45A‘C4xn - 46cpS
%3 2 * 3 2, 40
15 = 263(xn + xnxm) + 45At‘4(x." + xnxm) - ;’Z A
2 2
+ SpéB §S Ay - 46Cps A

500

I,, =\

31 m A s L, =1

Iyp = Ay 2 Ly = 4yp

2 2

k + Az + 5

I33 Cz{"n" * SooMn 2+ 2 pcz

From {36) it is seen that for non-trivial solu-
tions of A, Bons Cpps the following deter-

minantal equation is to be fulfilled

dEttzij] =0 (37)

Equation (32) yields a characteristic equation of
the form,

pmn[S] =0

q_Ts]

mn

where P, [s] and QunLs] are polynomials in s.
Thus, the zeroes of the above equation are deter-
mined from:

Pmn[s] =0 (38)

Equation (38) is the characteristic equation of
the system (represented by the plate subjected to
uniform bi-axial compress1ve loads). The zeros
of this equation, i.e., the roots s; of Pmn[s],

are the eigenvalues of the system which in
general are complex quantities.

They decide the nature of f [t] and hence
the stability of the system. When Re[51] >0,
fanlt] becomes unbounded with time and the

following cases of instability may arise due to
the nature of s;: (i) Im[s;] = In this case

mn[t] grows exponentially with time, and we have
instability by divergence, (ii) Imls;] # 0: In
this case f[t] has an oscillatory growth with
time and the amplitude of oscillations is given

by e**. This leads to instability by flutter.

Therefore the stability problem is reduced
to the examination of the nature of the zeros of
the characteristic equation of the system (38).
The coefficients of the characteristic poly-
nomial, P s}, in Eq. (38) can be varied by

suitably varying the inplane edge loads a1
and g,, in order to yield convenient stability
boundaries of the system.

Stability Analysis Using a First Order Transverse
Shear Deformation Theory -(FSDT)

By paralleling the procedure already
developed for the HSDT we obtain the character-
istic equation of the system in exactly the same
form as given by (38) but with different
coefficients. These coefficients are determined
by Eq. (37) in which, for the FSDT, we have,

3 3
_h7 2 h x*2
S R v L '6"'.63)‘m

* 2
11 *h o+ 8 mTss



3 3
= .h h” =*

4" T?'tikmxn Y Cékmkn
Z13 = h)‘m

W2 p3 g - (39)
Z22 = T?'tjkm + 3"Eéhn *h+ 6cmlt.Zs
o3 = My s I3y = Ny Iy = Ay w2y = 1y,
Ly =22+ 22 4 s 9§~f*52 + Ez (01132 + g,.2%)
COR N T K2 211Mm T Z22M,

Proceeding in exactly the same manner as for the
HSDT, we obtain the stability boundaries of the
transversely-isotropic plate subjected to uniform
inplane compressive edge loads.

Stability Analysis Using the Equations
Representing the Interior SoTution in the

Framework of the FSDT

Towards the goal of revealing through
numerical comparisons with the solution obtained
via Eqs. (26) and (27) that Eq. (22), (governing
the interior solution), is thus by itself suffi-
cient to analyze the stability of transversely-
isotropic plates, we will consider now Eq.

(22). To this end, the following representation

(0)
for the transverse displacement V3

(0) ©
Valx)axy5t] = mzl nzl s1n[xmx1]sin[hnx23fmn[t]
(40)

which satisfies the boundary conditions is postu-
lated. Replacement of (40) into the L.T. of Eq.
(22), yields:

mzl nzl(ﬁﬁn[SJTQn[s] + Uﬁn[s])sin[xmxljsinixnle
=0 (41)
where
_ 2 2,2 2 2
Runls] = E*(km AT gy hy + gghy)

3
RS 4. 2.2 4 2.2
+ g;zf3(211("m *Aghn) * goplng + ML)

3 mm .
* fmnm]) * GC ;"‘:E‘ZB’C;[S](S:Sfmn[O] * Smen[OJ

2

+ sf [0] + f[01) + s,mf, (0102 +22))s

¢ (spn b [0] + 6 m £ D2+ 32])

m
+ 80 =3 (211hp + SR (7[00 + Fo (0])

K

(42),
where ,
oftd = UM &y rf(—;;—)gn. (42);
- \W

Using similar arguments as in the previous cases
the characteristic equation reduces to:

ﬁhn[s] =0 (43)

Equation (43) may also be used to determine the
stability boundaries of the transversely-
isotropic plate subject to uniform inplane edge
loads.

Stability of a Transversely Isotrqgjc_
Viscoelastic Plate Undergoing Cylindrical

Bending

Consider a transversely-isotraopic plate with
an infinitely large aspect ratio (i.e., Ly/L;

+ =) and simply supported along its edges Xy =
0,L;. The plate is subjected to a uniform

compressive force system applied along it§
edges. Thus, the plate undergoes cylindrical

Vi.

bending and in this case the operator 6/6x2 -+ 0,

2
2 he > 2,2 2
" OpTos + Sy = Tys (g + A)
m,m m
1Mo <+ 4 1 2 2 2 2
+ 6: ;;2-C25 + 6C E?—E;s (gllkm + 922hn)
2,2 . .2
* SemsT(An + ) (42),
and, ‘
2
= g 2 2 h
Qals] = sym £ 035 + aym (B2 + An)a(—-z- t;(sfmn[o]
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In the following developments, we analyze the
stability of the plate in the framework of the_
FSDT by making use of the correspondence princi-
ple. To this end, we consider the uniaxial
counterpart of Eq. (22) which yields:

{0) (0) (0)
D V3 ynltd = Lyg V3 440t
2 (0) (0) (0)
+ ‘2;2‘ C3 Ly V3,11n[td * &pmy V3Lt
2 (0) m o (0) (0)

" 52 G300 Vg, 12(td - & 2% tn V3, nltl

mm, (0 (0) 0 (40)
* o8y 7 Co Valtd - 8em Vg gelt] =

In Eq. (44), D, C;, C3 are the elastic counter-
parts (defined at t = 0) of the previously



defined quantities D[t], C,(t], C3lt].

Now making use of the relations presented
e.g. in [4] we obtain the following results for a
transversely isotropic body:

~

£ E

m -7 7
-y

: E1313 = G' (45)

Replacement of Eqs. (45) into Eqs. (25), and

(42)5, evaluated at t = 0, yields:
~ 3 E
- h _ 1 71111
DB T G2, (46)

Introducing (46) into (44), neglecting the effect
of rotary and transverse inertias (i.e.,

6 = SD = (), and postulating that K2 = 5/6, we
obta1n
~ (0) (0) (0)

!L- Vy - LV

1111 12 3,1111 11 "3,11
Rl £ (0) (0)
1111 R
T“ETSES‘ Ly V3,1111 % 0 (47)

Now we consider the constitutive equations for a
transversely isotropic plate undergoing cylindri-
cal bending and exhibiting viscoelastic proper-
ties in transverse shear only. These pertinent
equations may be written as

o, [t = £} e0,0t] (48)

—_— . t .
clB[t] = 2f0E1313[t - r]e13[1]dt.

Making use of the C.P, in Eq. (47) in conjunction

with (48) yields
. Ellll (E) (3) 3 E h3 (8)
T F 11 '3,1111 ~ fri11 17 V3,111
1313
(0) (0)
+ L11 V3’11 =0 (49)

Introducing the orthogonality relation between
the creep compliance and relaxation moduli given
by 4sf'3x3§rw3ﬁ3 =6, into (49) we obtain:

2~ (0)

- 10 E1ann L1y (LF 530 + Fugpal00) Vg g

L O (© @
bt Ysunt taVan v 0 (80)

Equation (50) is the equation in L.T. space
governing the stability of viscoelastic
transversely-isotropic infinite aspect ratio
plates, exhibiting viscoelastic properties in

transverse shear only.

Solution of Stability Problem Based on Eq. (50):

The following representation of the creep
compliance in transverse shear which corresponds
to a 3-Parameter Solid is considered:

(3)
(1) (2) -
Frapalt] = Frapp - Frapge © 1313°  (51)

We also assume the following representation of
the transverse displacement (valid for simply
supported boundary conditions at x; = 0, Ly):

(0 ® .
Vy = mzl fm[t] s1n[xmx1], Ay = mn/Ly (52)

Insertion of (51) and (52) into Eq. (50) yields

(2)
2@ (D sFi1313 . 4
y 0o 'nfunl Fias - =3
Fi313
3 (0)
B ?"K; * oLy J F,osinlax1=0

(53)

on which basis, by invoking the same arguments in
the previous analysis one obtains:

20~ M@,
1 L1 Eirnn [(Fy3p3 - Fizpg)sthy,

2 (0) (1)  (3)
+ 37 Uil Foags F1313]*

(3) ~ h3 4 (0) 2
tIs+ FrgallEypg oM * Ly Med =0
(54)

A cursory inspection of Eq. (54) reveals that it
posses real roots only (since it is linear in
s). This allows us to conclude that the insta-
bility could occur by divergence only. Having in
view the fact that for divergence instability,

= 0 in (54), we obtain,

3

n 2
©  -Fyy 12
=7 »

(o E1111F1313Mn

(55)
+ 1]

It is easily seen that the lowest value of this
load corresponds to m = 1. Considering (51)

(3) k3 . -
with Fig5 = 0 (i.e., the elastic case), it is
easy to verify that the static buckling load for

the case of elastic transversely-isotropic plates
reads



~ 3

h 2
() - B I“(%;)
B S ) ) E
15 E1111 (Fyaps - F1313)(I;° +1]
56
(1) (2) (3) (56

Since F1313, F1313 and F1313 in (51) are all

greater than zero, we may infer, upon comparing
(56) and (55) (considered for m = 1}, that the
(divergence) instability loads for the visco-
elastic case are lower than for its elastic
counterpart.

VII. Material Property Determination

In the previous section, by considering the
case of cylindrical bending, a closed form solu-
tion for the instability problem was deter-
mined. However, for the more general case of the
plate instability a numerical procedure is neces-
sary to be developed. It is why, the material
properties are to be expressed explicitly as
functions of time.

The effective moduli E, p, E', u', G' for an
elastic, transversely-isotropic material may be
obtained by using suitable micromechanical equa-
tions which expresse the effective composite-
material properties in terms of its constituent
counterparts (i.e., the fiber and matrix). Then,
by using the correspondence principle we may
obtain the relevant micromechanical relations for
a viscoelastic material. Due to the
unavailability of suitable micromechanical rela-
tions for a transversely-isotropic material of
this type we will restrict ourselves, for compu-
tational purposes, to the case of an isotropic
material. In such a case p' =y, E' = E, G' = G.

Using the properties for the isotropic,
viscoelastic epoxy matrix considered by Schapery
[7] the following relations were obtained when
th?_gatrix behavior is modelled as a 3-parameter
solid:

3

E[t]= 0.8 x 10° + 0.18 x 108¢~0+4115 x 107%¢
for 0 < t < 2000 hrs :
W[t] = 0.372 - 0.007¢"0+2403 x 1072
| for 0 < t < 2000 hrs (63)
where the time t is in minutes.
Introducihg (63) into (27) and (32)) we

obtain the material properties defined
by T, Ty, Tay Cy» Cr and B
Yy 1° 2° 3’ 4s 5 and D .

VIII. NUMERICAL RESULTS AND CONCLUSIONS

The stability boundaries were obtained by
solving the characteristic polynomials associated
with TSDT (Eqn. 38), its FSDT counterpart and
FSDT single equation (43). This was done by
using the IMSL subroutine ZPOLR. The numerical
applications were considered for an isotropic,
viscoelastic plate. By considering the initial
value theorem for the Laplace transformed
material properties appearing in Eqs. (25) and
(42),, the numerical applications include also
thei% elastic counterparts.
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In all these cases the full dynamic solution
was considered in the sense that throughout the
applications 6A = BB = 6C = GD = 1 where

68’ 6C’ 50 are tracers identifying the dynamic
effect of 033> rotary and transverse inertias,
respectively, while 5p is a tracer identifying

the overall (i.e., static and dynamic) effect
of 033 * It was observed that the inclusion or

exclusion of the inertia terms does not affect
the results.

The results associated with the classical
Kirchhoff theory were obtained as a special case

of the FSDT by considering therein K2 » = which
is equivalent to consider infinite transverse
shear rigidities. The results obtained in this
study are not universal since a non-dimensional
analysis was not possible due to the inherent
complexity of the problem.

The stability boundaries are displayed in
Figs. 1, 2, 5 and 7 for the case of isotropic,
viscoelastic, flat plates, while in Figs. 3, 4, 6
and 8 for their elastic, counterpart. Results
for thick (Ly/h = 4.8) as well as thin plates
(Ly/h = 24) are considered in Figs. 1-4, and in
Figs. 5-8, respectively. In Figs. 1, 5 and 6 the
case of biaxial compression was investigated.

For this case, the aspect ratio (A.R. = Ly/Lj) of
the plate was taken as unity. The values of the
inplane, normal edge Yoads gyp versus g,, are

plotted to obtain the stability boundaries. In
Figs. 2-4 and 7-8 the case of uniaxial compres-
sion was examined. In this case, the aspect
ratio, A.R., was varied and the corresponding
value of gqp was plotted in order to obtain the

stability boundaries. For all plots shown, M and
N denote the mode numbers in the x; and x, direc-
tion, respectively. It was observed that for
biaxial .compression, the stability boundaries
corresponding to M=1 were the lowest ones, where-
as for uniaxial compression, those corresponding
to N = 1 were the lowest ones. Therefore, in
each of these two sub-cases, only the lowest
stability boundaries were displayed. For all the
cases envisioned herein, instability occurs by
divergence only.

Conclusions

In this study, a stability analysis of
transversely-isotropic, viscoelastic rectangular
plates has been undertaken. The equations
governing the stability were derived by using the
correspondence principle.

In the modeling of the problem, the
Boltzmann hereditary constitutive law for a 3-D
viscoelastic medium has been used., In order to
determine the asymptotic stability behavior the
stability problem was analyzed in the Laplace
transformed space.

The special cases considered in the numeri-
cal applications allow one to conclude the
followings:

1. The stability boundary determined for a visco-
elastic plate are lower than those pertaining



3

5

to its elastic counterpart. This conclusion
appears evident when comparing Figs. 2 with
Figs. 3, 4; Figs. 5 and 6 and Figs. 7 and 8.

Incorporation of transverse shear deformation
effects results in stability boundaries which
are lower than those of their transversely-
rigid (classical) counterpart. In this sense
Figs. 2-4 are relevant. This property appears
more prominent for low aspect ratios panels.

The results displayed in Figs. 1 show that in
the case of thick panels o¢,., may influence the
viscoelastic stability bouﬁaary in a strong
and beneficial way. However, from the cases
considered herein the critical stability
boundary, corresponding to M = N = 1, is not
influenced by this effect. In addition, for
thin panels (see Fig. 5) the effect on the
instability boundaries is insignificant,

The transverse shear deformation effects
appear to be more pronounced in the case of
the viscoelastic plates than in their elastic
counterpart. Figures 2-4; 5-6 and 7-8 are
relevant in this sense. It may also be
remarked that for the special case of the
viscoelasticity experienced in the transverse
shear direction only, the discard of
transverse shear deformations results in
identical solutions for the viscoelastic and
the elastic cases.

The analysis performed here allows one to
obtain the nature of loss of stability, i.e.,
the one by divergence or by flutter. However,
as it was observed for an isotropic, visco-
elastic plate the instability occurs by diver-
gence only.

In light of the results obtained from Figs. 1-
8 it may be concluded that the boundary layer
solution associated with an isotropic visco-
elastic plate has no effect on the stability
boundary. This means that consideration of
the interior solution equation yields the same
results as the full system of equations.

20000 =
Q N[« HSOT(3 Eqs)
O Nw2 ---- FSOT
QN3 ~— FSDT((?E?}
2 N3 M=l
3 Ta
k-
&
o
50000 100000
i (psi)
Figure 1. Stability boundary for jsotropic

viscoelastic plate; Ll/h = 4,83
biaxial compression; 8y = 1.
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7. It is observed that for large aspect ratios
(Ly/Ly) the stability boundaries come closer
to the ones based on the classical Kirchhoff
theory of plates. This conclusion holds valid
for both the viscoelastic and elastic cases.
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Figure 5. Stability boundary for isotropic Figure 6. Stability boundary for isotropic
viscoelastic plate L1/h = 24; biaxial elastic plate; Ly/h = 24; biaxial
compression; 8, = 1 or §, = 0. compression; &, = 1 or ¢, = 0.
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Figure 7. Stability boundary for isotropic Figure 8. Stability boundary for isotropic
viscoelastic plate; Ly/h = 24; elastic plate; Ly/h = 24; uniaxial
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