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Abstract

Numerical solutions of Navier Stokes
equations for steady, incompressible,
laminar flow of viscous fluid over ellipt-
ical cylinders are obtained. The steady
state Navier Stokes equations are written
in elliptic coordinate system, and recast
in terms of vorticity and 'disturbance
stream function'. These equations are put
in their finite difference form and solved
by a modified version of extrapolated
Liebmann method. In this modified and
updated version a new set of far away
boundary conditions have been developed,
in addition a good distribution of grid
points have been obtained without involv-
ing any transformation. Solutions are
obtained in terms of important flow para-
meters for Reynolds number varying from 15
to 50 and thickness ratio of elliptic
cylinders varying from approximately 25%
to 100%.

I. Introduction
For incompressible fluids, Navier
Stokes equation is of the form:
Dy = 2
f—,:g"fF-VP‘!-MVa, (1.1)

In conjunction with continuity equation

V.3=0 (1.2)
One obtains four equations for the three
velocity components u,v,w and the pressure
p.

Study of flow over elliptic cylinders has
been done by few workerd” This study
is done by use of unsteady state Navier
Stokes equations at low and moderate
values of Reynolds numbers. In most of
the work, investigations are carried out
on the starting flow and development of
1lift and drag at angles of attack. Influ-
ence of surface boundary conditions on
flow characteristic is examined.

The study of flow over circular
cylinders has been done by a large number
of workers in the last thirty five years.
The study being directed towards: under-
standing of fguid flow: development of
newer experimental methods; improving
accuracy of available results;development
of asymptotic theories; determination
and addition of new results and so on.

(=14 . .
Stead? s%ats_Navier Stokes equations
and unsteaéy”ﬁavier Stokes equations

dre solved numerically for flow over
circular cylinders to obtain steady state
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solutions and vortex shedding. Some
workerg® ™" have done extensive experi -
mental work for incompresible steady flow
over circular cylinders.

Numerical solutions of Navier Stokes
equag%%ns are obtained by Jordan and
Fromm*"’ using SOR method of Liebmann;
method of series and trunkation is used
by Patel?® ; Fornberg" has developed
a technique based on Newton's method
which is second order accurate. Lately
fast poisson solver technique has been
developed and used by Temperton3® ,
Fornberg™ and Berger3V This technique
has proved to be faster but its use is so
far limited to lower values of Reynolds
numbers. Berger“‘ observed errors in the
original technique in surface values and
modified the technique to eliminate
these errors.

. (32) :
Peregrine has made certain comments
on the theoretical predictions and calcu-
lations of Fornberg(®2? and smith(®®34
He observes that certain parameters such
as surface shear, pressure distribution,
point of separation and drag values are
predicted with reasonable accuracy by
use of coarser meshes, but to predict eddy
characteristic accurately very fine mesh
has to be used. In the wind tunnel
experiments Smith has established that
eddy characteristics are extremely sensi-
tive to the proximity of walls and wind
tunnel experiments do not replicate flows
corresponding to unbounded fluid domains.
Numerical solutions of flow problems
require a grid distribution in a manner
as would give a dense distribution of
points in regions where functions are apt
to quicker variations and lesser points
in regions of well behaved functions. The
works of Thoman and Szewczyk®™, Fornberd?V
and Ghid®® at al need special mention.
They use anextensive grid system with a
large number of grig points in the wake
and near the surface. Thus their results
give a good picture of eddy characteristics,
though with prohibitive computer time and
money.

- : . (36)

A study of Imai's asymptotic solutions
for flow over circular cylinder indicates
that disturbance in streamfunction and
vorticity value and their variations are
non-zero in the wake. The fact has been
made use of in solutions of steady state

Navier Stokes {elliptic) equations by
Keller and Takami'” and Fornberg(4,29" |
The problem of imposing correct downstream
boundary conditions has been bypassed



by a host of workers by use of unsteady
Navier Stokes equations (which are
parabolic) . In the upstream of the
disturbance(wake) the flow conditions
are not identical. Thus there is need
to handle downstream boundary conditions
in aspecial manner. The mixed type of
boundary conditions are most suitable
and this has been established by
Fornberd!%?

The type of computers needed for
extensive and accurate numerical work
as done by Forberg®?? are cbc

STAR 100, CDC Cyber 205,UNIVAC Illiac
IV and Goodyear Staren IV.

II.Problem Statement

Incompressible, steady state

Navier Stokes equations are written for
two dimensional flow in elliptic coordinate
system. Symmetry of flow is imposed

about the major axisof elliptical cylinder.
The equations are first written in terms
of vorticity and stream function. Concept
of disturbance stream function is intro-
duced and the equations are written in
terms of vorticity and disturbance stream
function. XKpressions are formulated for
value of stream function, velocity,
vorticity, pressure distribution on the
surface and drag coefficient in terms

of vorticity and disturbance stream
function.

Search has been made for the type
of boundry conditions (far away). The
nature of boundary conditions was decided
after critical examination of
the analytic asymptotic solutions for
circular cylinder and some numerical
experimentation by the author.

The stream function and vorticity
equations and various expressions are put
in their finite difference form. The
finite difference equations are solved by
a modified version of Liebmann method by
successive over relaxation. The process
of the iteration is continued till changes
in values of vorticity and stream function
do not exceed some pre-assigned small
value.

Numerical experimentation has been
validated by solving Navier Stokes equati-
ons for flow over elliptic cylinder having
thickness ratio of 99.93%, and comparing
the results obtained with results for flow
over circular cylinders. Results show
good agreement for coefficient of drag
angle of separation, vorticity and pressure
distribution over the surface. Further
experimentation is done to obtain results
for 75.09% elliptic cylinder, 50.05%
elliptic cylinder and 24.96% elliptic
cylinder.
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A. Differential Eguations and Boundary
Conditions.

Equations 1.1, and 1.2, are written

in terms of disturbance stream function ¢
and vorticity w. The flow parameters

are non-dimentionalised with reference to
the free stream velocity U; and geometric
parameters wrt half major axis 'a'; shear
stress and pressure 2re non-dimensionalised
wrt dynamic headifU ; so that Reynolds
number is defined by Re = Ua/¥, total

stream function ¥, is given by \P- v+ .

The continuity equation 1.2 is identically
satisfied by the stream functlon'¥ Further

equation 1.1 with little mathematical
manipulation becomes the vorticity transport
equations and in elliptic coordinate

system, i.e, in (%, 7 ) coordinate system
is written as: Q¥ 0d 0¥ AW 'sinh% cosn dw
AN 7Y % BN , coshg, N
_cosh§ sinm ma ?_(Qw nw)
co&h e, (2.1)
and vorticity eqhatlon is'written as
2 =
_w=_l (a¢ ¢) (2.2)

agt
where h is metrlc coefficient for elli-
ptic coordinate system and given by

= ’sihhzf,-g- sin®y /cash g, (2.3)
The velocity components u and v in
direction § and m are given by

_1(ay, ¢ =Ly, Y
=L GEE) o veblErEE)
where = §, represents surface of the

elllptlcal cyllnder, pressure p is given

by ) dn (2.5)
: z .
§ = sm‘q-f-cos'qtanhﬁu (2.6)
Coeffic1entﬂof drag due to pressure
(2.7)
Cdps-jp,fcos 8.dn
coefficieé%,of drag due tofriction
(2.8)
-4
C.. = S Wf sinBdn
£ Re (2.9)

N
Total coefficient of drag:  Cap* Caf = &4
where ©is angle made bynormal at a point
on surface with x-axis.

Equations 2.1 and 2.2 are two second order
partial differential equations in two
unknowns ¢ and « therefore specification
of both and @ or their normal
derivatives is required on all boundaries.
The graphical representation of flow
problem is shown in fig. 1. The boundary
conditions specified are:



FAR AWAY BOUNDARY

FLOW

ELLIPTICAL
CYLINDER

FIG ' BOUNDARY CONDITIONS

1. On the surface of the elliptical
cylinder no slip conditions exist and
normal component of velocity on the
surface is zero, i.e, impervious surface.
2. On the axis of symmetry both
disturbance. stream function and vorticity
are zero.

3. On the far away boundary both distur-
bance stream function and vorticity

are zero except in wake region. On the
wake portion of boundary the value of
disturbance stream function and vorticity
are extrapolated from interior values by a
smooth curve.

B. Finite Difference Form

N+

¥,

b

“titer { ¥

il § i

(\P j*‘ J-l )
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parameter CF =

where T is a factor less than 2, in the
present scheme its value was taken as
1.9 accordlng to stability criteria
®,p = modified relaxation
parameters chosen after
numerical experimentation

also value of £ , B ljes between 1/4

and 1/2 CF " CF

where for

%‘0; C1=..-1 ;C2 = 0 ;C3=C1~PC2

C,'QO; C4=-1 ;CE-> =0 ;C6=C4-|-C5

C¢ >03 C=0 ; € =1 ; C3=C, +¢,

C;,?O; C4=Q ;Cs =1 ;c6=C4+cS

and for v *
17 17

u' = ﬁ;{ﬁ- » c = A’)/A'§ v =-Rﬂ§

%
¢

5_5_._9}(!11'3 ui’,j + sir;gsg»%osn)
(]
v{'j - co.:}és% siml)

= Bem(n;
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The boundary conditions in the finite
difference form are

-

a) on the surface of the elliptical

$=% 1=1, §=1,2 .oeneq .
‘l’ tanhi, si.nrl

l. 2 . 2
0.)‘.,]_ h {(A§ [1"'(2;’)2]&7\'\@ .5"\11j+A-—-§ Sl"nj}

b) on the axls of symmetry
i) Ahead of elliptical cylinder

:’::2;;8 i= 1'2'3 .-.-.a.-p
ii) Behind the elliptical cylinder
t‘;_’;g i= 1,2,3,0000...p
("
¢) On the far away boundary
i) Except in the wake: +Pj"o , w"iao

IV, NUMERICAL EXPERIMENTATI ONB 7

In this iteration scheme all second
order derivatives are replaced by central
differences, first order derivatives of
disturbance stream function are replaced
by central differences, and first order
derivatives of vorticity are replaced by
forward difference or backward difference
depending on the sign of their coefficients.
The iteration is continued till the latest
VﬂueY‘élffers from previous value by
less than 10% and latest value st
dlffers from previous value «" by less than
107% at all mesh points.

Computations are first carried out
for 99.93% elliptic cylinder at Re =15
using a grid of 21x11. The far away
boundary was at about 8a. The boundary
was then shifted to 10a, with some impro-
vements in flow parameters, but no
separation. A grid of 46x21 was used,
the flow parameters agreed with existing
values. Further a grid of 56x2l was
used with boundaryshifting to 20a.
results showed good agreement with
existing results for circular cylinders.
Further runs were made at Re=30 and 50
for 99.93% elliptic cylinder. These
results also compared well with existing
results for circular cylinders. At Re=100
the values of drag coefficient and surface
vorticity were lower due to the coarse grid.
No difficulty was encountered in convergence
of iterative scheme. = A finer mesh was not
used due to limits of computer time.

The

V. RESULTS AND DISCUSSIONS

Result of the computational investi-
gation have been presented and discussed
in the following text.

Validation of Computational Technigue:



The governing equations
in their finite difference form are
computationally well posed as determined
by numerical experimentation . The 99.93%
elliptical cylinders bear close geometrical
approximation with circular cylinders and
as such solutions were first obtained for
incompressible, viscous steady flow past
99.93% elliptical cylinder at Reynolds
number of 15,30 and 50.

These computed results were compared
with available existing results. Compari-
sons were made for flow parameters such as
drag coefficient, figure 2: vorticity
distribution, figure 9; pressure distri-
bution, figure 10; and angle ofseparation.
There is a good agreement.

Solutions were subsequently obtained
for 75.09%, 50.05%,24.96% elliptical
cylinders at Reynolds number of 15,30 and
50 using the same technigque and same
computer programme but altering the input
data only.

Discussion on Coefficient of drag.

Coefficient of drag as obtained in
the present work for 99.93% elliptic
cylinder has been compared with available
values of drag for circular cylinders.
This comparison is shown in figure 2.
Figures 2~5 show that for each elliptic
cylinder the drag coefficient decreases
with increase in Reynolds number. Impor-
tant flow characteristics as obtained in
present work are given in table I.

It is observed that at each of
Reynolds number (see fig.6-8) of 15,30
and 50 the drag coefficients Cd CdP

’

increase with increase in thickness ratio
while drag coeficient due to friction Cg

decreases bya very small amount due to
increase in thickness ratio. This decrease
is more below 25% thickness ratio and the
tends to even out as thickness ratio
increases.

One of the important findings of the
present research is that coefficient
of drag Cd increases linearly with increase

in thickness ratio for a given value of
Reynolds number. This linear behaviour
is observed for thickness ratio greater
than 25% and has now been expressed in

terms of a 'drag thickness ratio law'.
Ca = cq - 0.0051 (100-x) for a
X given value of Re,
where,
Cg = Coefficient of drag for
circular cylinder.
Cgx= Coefficient of drag

forx% elliptical cylinder.
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For incompressible, laminar steady flow

in the Reynolds number range from 10 to 60,
the decrease in coefficient of drag C .
with increase in Reynolds number is due

to both decrease in Cdp and C ae’ i.e.
coefficient of drag due to pressure and

friction respectively. This change in.Cdp

and is continuous more initially
and less finally.

Discussion on'Vorticity Distribution

Distribution of surface vorticity for the
99.93% elliptical cylinder at flow Reynolds
number of 15 has been compared in fig.9
with the values obtained by Keller & Takami.
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Data has been plotted for distribution of
vorticity ever the surface of 99.93%,
75.09%, 50.05% and 24.96% elliptical
cylinders at Reynolds numbers of 15,30
and 50. 1In figs. 9-12 respectively.
These plots reveal, that the values of
vorticity on the surface change sign in
the hind region of 99.93% and 75.09%
elliptical cylinders at Reynolds number
of 50,30 and 15; even for the 50.05%
elliptical cylinder this behaviour
persists at Re=50. A reversal in the
sign of vorticity implies flow separation.
At Re=30 and 15 for 50.30 and 15 for
24.96% elliptical cylinder there is no
change in the sign of surface vorticity
and obviously no separation of flow occurs.

Further for each of the elliptical
cylinders, it is observed that maximum
vorticity on the surface is at Reynolds
number of 50, and lower values are observed
at Reynolds number of 30 and still lower
at Reynolds number of 15. The front
stagnation point is at 6=180°according

to the coordinate system and based on the
flow problem. At this point vorticity

is zero. As .the fluid moves along the
curved surface of the elliptical cylinder
from front stagnation point, vorticity is
being generated along the surface. This
vorticity is diffused in addition

to being transported along the direction
of flow for higher velocity flows and

for creeping flows it is able to diffuse
more in a direction transverse to the
flow. Thus as the flow proceeds along
curved surface the shear layer thickens
due to retardation of flow near the body.
With an increase in flow Reynolds number
the vorticity on the surface of the
elliptical cylinders is higher at higher
Reynolds numbers. The magnitude of
vorticityon the surface increases to a
maximum value (figs 9-12) and then finally
becomes zero at trailing edge, i.e.,at 8z0°
For separated flow the vorticity value
changes sign before it finally settles
tozero value.

The maximum value of vorticity for 99.93%
elliptical cylinder (refer fig.4) occurs
for Re=15 at 125, for Re=30 at 128.5°and
for Re=50 at 130% This occurance of a
maximum, upstream of 90°, inspite of the
continued favourable pressure gradient is
due to retarded flow and thickening of
shear layer and its consequent effects.
For higher Reynolds numbers the maximum
vorticity point shifts towards upstream
because of nature of favourable pressure
gradient.

For 75.09% elliptical cylinder(refer fig.
10) the maximum value of vorticity occurs
for Re= 15 at 145°, for Re§30 at
146.5°and for Re=50 at 148. Then for
50.05% elliptical cylinder (refer fig.ll)
the maximum Xalue of vortici@yoccgrs for
Re=15 at 164 for Re= 30 at 164 and

for Re=50 and 165°; and for 24.96%
elliptical cylinder (refer fig.l12) the
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the maximum value of vorticity occurs at
175.5° for Re=15, 30 and 50. This clearly
shows that the point of maximum vorticity
shifts towards leading edge as the
thickness of elliptical cylinder is
decreased. Further it is observed that
magnitude of maximum vorticity on the
surface, for a given Reynolds number
increases as the thickness ratio decreases
below 75%.

Angle of Separation

The separation of flow on the surface of
the cylinder takes place at zero vorticity
point or where norma}l to the surface of
body becomes tangential tovelocity profile
on surface. Fig.l3 shows variation of
angle of separation with Reynolds number.
It is observed that angle of separation
increases with increasing value of Reynolds
number and decreases with decrease in thick-
ness ratio. For the 24.96% elliptical
cylinder there is no separation of flow in
the given Reynolds number range. Further,
good agreement exists between the predicted
values of the angle of separation for
99.93% elliptical cylinder with those of
circular cylinder.
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FIG 13 REYNOLDS NUMBER ¥s ANGLE OF SEPARATION

Discussion on Pressure Distribution:-
Pressure distribution over surface for
99.93% elliptical cylinder at Re=15 is
compared with pressure distribution over
the surface of circular cylinder as
obtained byKeller and Takami in fig.1l4.
The results are found to be in good
agreement Flow over the surface of a
solid body,in particular elliptical
cylinder,is strongly influenced by the
pressure distribution. The phenomenon of
flow separation is intimately connected
with the pressure distribution. For flow
over a flat plate parallel to the flow st-
ream, there is no separation of flow

as there is verylittle or no pressure
gradient. The distribution of pressure

on the surface of elliptical cylinders
can thus be considered to be made up in
three zones:

i) favourable pressure gradient - Zone I

ii) slight favourable/adverse pressure
gradient - Zone II,.

iii) Adverse pressure gradient - Zone III



For the 99.93% elliptical cylinder at 20

Re=15(fig.14), Zone I extends from 180 18

to 87° and for Re=1l50 from 180° to 93°. Ls o Keller & Tokam: 1966
. 4 - Presen!

Zone II of sight favourable/adverse 1-4

pressure gradient is nearly absent. r2b

Zone I1II of adverse pressure gradient 10
exists from 77° toO° for Re=50. This
clearly indicates that if flow separates
for Re=15, then the point of separation
shifts upstream with increase in oir
Reynolds number to 30 and shifts still 02
further upstream for Reynolds number

of 50, and this does happen in the

flow situation considered in the present
computer experimentation( fig. 13 for 180
angle of separation). The reason for fie
different size of Zone I, Zone II, and

Zone III for different elliptical cylinders
(figs.14-17) may be attributed to (i)
viscous effects which results in dissipat -
ion of energy of the system (ii) displace~
ment thickness that alters the effective
shape of the body for potential flow
pressure distribution. These two factors
are strongly influenced by Reynolds

number and hence the size of zone changes
with Reynolds number.

o
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Then for the 24,96% elliptical cylinders
(fig.17) it is seen that Zone I is very o
small, Zone II is larger, and Zone III \Q§:==_k ‘,¢==;;2??§,'>
is not existing. From f£his it maybe 5T %o 1% o 0 B0 W0 100 80 B0 70 60 % & 30,20 ® 0
inferred that the chances of flow separa- F16 15 PRESSURE CISTRIBUTION OVER SURFACE 7509 %e ELLIPSE

tion diminish with decrease in

thickness ratio. This pattern of pressure
distribution on the surface may again be
attributed to viscous effects and concept
of displacement thickness.
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Flow patterns "

Stream lines and equivorticity lines
are presented in figs. 18,19, and 20 for
24.96% elliptical cylinder at Re=15, 30
and 50 respectively.

a) Streamlines: The distance between .
two streamlines indicates the mass flow
and thereby the velocity and tangent to a
streamline gives direction of velocity:
there is no velocity normal to a streamline.
Jt is seen from fig. 18,19,20 that stream -
lines are deflected by the presence of the
solid bodyand defection corresponds to the
shape of the body and Reynolds number.
Thus velocities are higher ahead of 25
cylinders and lower behind the cylinder.
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The effect of increase in Reynolds
number (from 15 to 30 and then to 50) is
also noticed from figs. 18, 19 and 20.
With increase in Reynolds number the
streamlines ahead of cylinder becomes
narrower while behind the cylinder get
wider.

This means that velocities ahead of
cylinders increase and behind the cylinders

decrease with increase in Reynolds number e N N T T R N
.

It was also seen from computer prlnt outs FIo 7 PRESSRE CISTRIUTION OVER SURFACE 2096% ELLIPSE

which give velocities ahead and in wake ~
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of 24.96% elliptical cylinder. The flow
is unseparated in the case of 24.96%
elliptical cylinder at Re =15, 30 and 50.

From velocityvalues for 99.93%
elliptical cylinder, for 75.09% elliptical
yllnder , for 50.05% elliptical cylinder

it is clear that(i)velocityvalues ahead
of elliptical cyllnders are higher than
velocity values in the wake.

(ii)velocity values ahead of elliptical
cylinders increase in Reynolds number,
(iii) there is change in sign of velocity
values in wake in case of separated flows.

FLOW STREAM FUNCTION s

FIG 18 STREAM FUNCTION & VORTICITY DISTRIBUTION
FLOW STREAM FUNCTION

FIG ®  STREAM FUNCTION & VORTICITY DISTRIBUTION
oW STREAM FUNCTION ¥
:300
—200
N
ELLIPSE 2296 oS 0
Re = 50 —— 0L

FIG 20 STREAM FUNCTION & VORTICITY ODISTRIBUTION
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b) Vorticity lines: Figs. 18,19 and 20
give the plots of equivorticity lines
for 24.96% elliptical cylinders at
Reynolds number of 15,30 and 50. With
increase in Reynolds number the equivor-
ticity lines are seen to elongate in the
direction of flow. The vorticity concen-
tration increases nearer the axis of
symmetry and does not tend to spread,
or, in other words the wake becomes
narrower with increase in Reynolds
number.

c) Velocity distribution: Velocity distri-
bution on top surface, i.e., at 6 =4/2
given in computer print outs for 99.93%
75.09%, 50.05% and 24.96% elliptical
cylinders respectiely at Reynolds number
of 15,30, and 50. From each of these
tables(not given), it is seen that bound-
ary layer thickness (i.e., where flow
velocity is approximately 99% for free
stream velocity) at the top at 8=%/2
decreases with increase in Reynolds
number. There is also decrease in boundary
layer thickness due to increase in thick-
ness ratio this happens due to favourable
pressure gradient over larger portion of
cylinders with higher thickness ratio

and hence smaller boundary layer thickness
at top of thicker cylinders.

VI. CONCLUSION

Navier Stokes equations have been
solved for steadylamlnar and symmetric
flow of viscous 1ncompre351ble fluid
over elliptical cylinders in the absence
of body force. Solutions in terms of
flow parameters have been obtained by
solving finite difference form of distur-~
bance stream function and vorticity
transport equation. The technique used
for obtaining solutions is a modification
of extrapolated Liebmann method of
successive over relaxation. Elliptic
coordinate system has been used sothat
application of bounary conditions is
easy and stretching of coordinates is
not required. The distribution of grid
points in the flow field is good, having
more points at places where changes in
dependent variables are significant in
obtaining reasonable solutions, i.e.,
more points near leading and trailing
edges and near the surface of the body.

By use of this coordinate system,
problems can be solved for flow over bod-
ies with geometrical shapes varying from
flat plates to circular cylinders, the
intermediate shapes being elliptical
cylinders of different thickness ratio,
The numerical scheme has been put to a
more rigorous testing, i .e., results
have been compared with existing results
of circular cylinders(withseparated flows)
rather than comparisons with results of
flat plates.



New type of boundary coditions have
been developed, keeping in view the

nature of laminar steady wake flow. These
type of boundary conditions depict the
flow correctly without theneed to go too
far from the body, thereby limiting the
need to increase the grid points exce-
ssively and its subsequent effects, i.e.
faster convergence,

The study of flow over elliptical
cylinders has revealed that flow para-
meters are influenced byvariation of
Reynolds number and thickness ratio.

With increase in Reynolds number
(i) the drag coefficient decreases
more initially and lesser finally(as
Reynolds number is further increased),
(ii) the angle of separation increases,
(iii) the length of recirculatory
region increases linearly (iv) the
maximum value of vorticityon the surface
increases and this maximum value shifts
towards leading edge as the thickness
ratio is decreased, (v) the constant
vorticity lines are elongated in the

direction of flow, and spreading of
vorticity transverse to flow gets
restricted to a narrower wake region,
(vi) the boundary layer thickness at the
top decreases and (vii) velocity values
ahead of cylinder increases.

With increase in thickness ratio
(i) drag coefficient increases linearly
for thickness ratiogreater than 25%
(ii) Boundary layer thickness at the top
decreases, (iii) there are higher chances
of flow to separate, and in case of
separated flows the angle of sepa ration
and length of recirculatoryregion
increases.

An outcome of this research is
development of 'drag thickness ratio law'
by which values of drag coefficient for an
elliptical cylinder can be estimated at
a particular Reynolds number provided drag
value of circular cylinder at that Reynolds
number is known and thickness ratio of
elliptical cylinder ismore than 25%.

There is some change in the nature of flow
when the thickness ratio of elliptical
cylinder becomes less than 25%,

Table 1 Summary of Calculations and results
THICKNESS Re r ixj C C C ©
RATIO dp df d s
99.93% 25 20 56x21 1.4504 0.9554 2.406 35e
30 20 56x21 1.0828 0.5834 1.666 46°
50 20 56x21 0.8866 0.4012 1.288 53°
75.09% 15 22 56x21 1.2894 0.9654 2.254 11e
30 22 56x21 D.9332 0.5888 1.522 27°
50 22 56x21 0.7404 0.4038 1.142 35¢°
50.05% 15 28 56x21 1.0990 0.9624 2.062 -
30 21 56x21 0.8032 0.6106 1.414 -
50 21 56x21 0.6190 0.4188 1.038 13.3°
24.96 15 21 56x21 0.9798 1.0244 2.004 -
30 21 56x21 0.6518 0.6258 1.287 -
50 21 56x21 0.4812 0.4302 0.911 -
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