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Abstract

Based on the kinematics of disturbance
propagation from moving singularities the
influence functions arising from the mo-
tion are derived for field points in an un-
bounded homogeneous medium. For generality,
volume elements and surface elements of
singularities are considered having arbi-
trary orientations in space and to the
trajectory. Furthermore different trans-
latory motions of the singularity elements,
the field points and of the medium are ad-
mitted. The spatial and temporal influence
functions show some universal relations
and characteristic properties in the radia-
tion field. Hence, for calculating the dis-
turbance fields of moving bodies having
subsonic or supersonic velocities the me-
thod can be applied directly both in the
steady and unsteady cases. The solution of
the field equation is obtained in the usu-
al way by resorting to integral methods and
fulfilling the kinematic boundary condi-
tions on the actual body surface, the sur-
face being subdivided into panel elements.
The method then follows the same line as
the classical panel method. For Mach num-
ber tending to zero all the expressions re-
duce exactly to the classical expressions
for incompressible flow.

Notations

Geometric Quantities

F control surface or singularity

° surface in the disturbance field
hS radial distance of a singularity

from a given trajectory

radial distance of a field point
from the trajectory of a singu-
larity (hO = hv)

H height of a field point normal to
a panel surface

1 length of a singularity element
and of the corresponding emission
segment

1 lengths along panel boundary

location of field point, singula-
rity and corresponding emission
point .

r radial distance in spherical po-
lar coordinate

r radial distance between singula-
rity and field point at the time
instant to

r radiation radius or emission ra-
dius of a spherical wave

rz effective radiation radius

r radial distance between panel-cor-
ner points and a field point

radial distance from field point
projection on panel surface to
singularity elements and panel
contour (Fig. §)

cartesian coordinates
local coordinates of a panel

€ spatial compatibility parameter
for fulfilling the kinematic of
disturbance propagation

inclination angle of r_to the
trajectory of the singtlarity and
of the field point

inclination angle of r, to the
trajectory of the singularity and
of the field point

5 inclination of r_ to the actual
v emitting surface 1* for signals
reaching a field point at time to

) angular position of surface ele-
ment of a panel from a reference
line

inclination of a source element

or panel surface to the trajectory
sweep angle of a source line

inclination of the POPPV—plane to
the XY-surface

inclination of the singularity sur-
face to the XY-surface

A inclination of the panel boundaries
to a reference axis (Fig. 8 )

Aerodynamic Quantities

a local sound velocity

sound velocity in a homogeneous
medium at rest

D doublet strength

Fi reduced disturbance force per unit
volume

Gij reduced disturbance force due to

momentum exchange per unit volume

I inducing function comprising re-
sultant influence function at a
field point

Ii' inducing function of the ith panel
J on a field point at panel j

k wave number (w/am)

Mas Mach number of the singularity
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Mach number of a moving field
point

Mach number component in the P PP
-plane of a moving field point

static pressure

static pressure in the undisturb-
ed medium

perturbation pressure (p - p )

nominal dynamic head as reference
quantity(prMaé/z)

reduced source strength per unit
volume

nondimensional perturbation guan-
tity for density and pressure

source strength
time

momentary time for signal reach-

ing a field point and the corres-
ponding emission time of the sig-
nals

perturbation velocities in the
medium

velocity of the singularity re-
lative to the medium

velocity of a field point rela-
tive to the medium

total velocity of medium elements
based on a moving reference sys-
tem

Mach number parameter (\/11~Ma§|)

Mach number parameter based on
the tangential component along
panel surface

ratio of the specific heats

temporal compatibility parameter
to fulfill the kinematics of
disturbance propagation

local medium density in the
disturbance field

density of the undisturbed medium
density perturbation (o-p_)

spatial influence functions due
to effective stretching of the
emission elements or effective
shifting of source-sink-elements
during emission

temporal influence functions
yielding the Doppler factors at
fixed or moving field points

circular frequency of the
disturbance source

circular frequency of the signal
at the field point

singularity functions

notation for momentary time
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o coordinates relating singularity
and field point at a time tO

v notation for radiation or emis-
sion quantities

i,3 direction vector and numbering
of panels

n emission locations for signals
reaching a field point simulta-
neously

n,n;,n, numbering of panel edges and

corner points

I. Introduction

The propagation of disturbances from
space fixed or moving singularities is de-
scribed by the wave equation. The classi-
cal wave equation was first formulated by
J.L. d'Alembert [13 for treating the one
dimensional case of string vibrations.
Thereafter the wave equation was applied
extensively to various fields concerning
propagation and vibration problems. The
solution of the wave equation for spheri-
cal radiation of sound waves was first gi-
ven by S.D. Poisson [23 . Following this
result one can derive the two dimensional
solution of cylindrical wave motions, as
was shown by T. Levi Civita [31 , H. Lamb
[4] and J. Hadamard [5]. The most general
solutions of wave propagations from spa-
tial distributions of singularities have
been given by A. Cauchy (6] , H.v. Helm-
holtz (71 and G. Kirchhoff (83 , which are
very useful for extensive application in
the field of acoustics and aerodynamics.

Propagation of waves from moving singu-
larities was first investigated in the
field of electromagnetic radiation and pro-
pagation of light as is well known from
the contribution of C. Doppler [91 . The
actual mathematical theory on this topic
was established later on by W. Voigt [103,
H. Lorentz [111 and H. Poincaré&C12]1 . Some
lucid expositions of the physical pheno-
mena due to wave radiation from moving
sources could be given after the theory of
relativity was postulated in the contribu-
tions of A. Einstein [133 , H. Minkowski
L7147 and some corresponding works.

The perturbation fields of moving singu-
larities in aerodynamics were first formu-
lated when the effect of Mach number or the
concept of compressible flows were intro-
duced. Thus, steady flows were treated by
O. Janzen [153 , Lord Rayleigh [161 , H.
Glauert C171 , L. Prandtl [C183 , J. Acke~
ret C193 , Th. v. Karmi&n and N.B. Moore
[201 , while unsteady flows were analysed
by H. Kilissner [21] , C. Possio [22] , and
I.E. Garrick [£233 . The treatment of wave
propagation from moving singularities in
the field of aeroacoustics was initiated
through the contributions of H. H&nl [241,
H. Kissner [25] , N. Rott [263 , H., Billing
£2731 , H.L. Oestreicher [28] , M.J. Light~
hill C23]1 and I.E. Garrick C301 .



For disturbance propagation from moving
sources the linearized wave equation in the
moving reference frame is equivalent to the
linearized field equation of unsteady aero-
dynamics. The usual solution procedure for
these equations, as is commonly followed,
is the application of integral methods
using integral transforms or Green's theo-
rem with a suitable basic function. In
both these methods the field equation is
usually converted to the classical form by
resorting to some mathematical transforma-
tions analogous to the Prandtl-Glauert-
transformation, or using Lorentz-transfor-
mation.

In the integral methods for steady or
unsteady flow fields the solution proce-
dure involves the use of aerodynamic in-
ducing functions, depending on the nature
of the singularities and their locations
relative to the field points. With the evo-
lution of the computational fluid dynamics
a very flexible and well suited method has
been extensively developed and is being
classified as panel method. The subsonic
panel method in its initial form is de-
veloped for incompressible flow as de-
scribed by J.L. Hess and A.M.O. Smith [C31131,
F.A. Woodward [323 , P.E. Rubbert and G.R.
Saaris £333 , Th.E. Labrujere, W. Loeve
and J.W. Sloof [341 . Further extensions
and applications of this methods are gi-
ven in the contributions of W. Kraus [3531,
S.R. Ahmed [361 , F.A. Woodward [371 and
J.L. Hess [381 . The treatment of the prob-
lem for unsteady subsonic flows were deve-
loped by E. Albano and W.P. Rodden (3931 ,
W.P. Jones and J.A. Moore [40] and W. GeiB-
ler 411 , while for steady and unsteady
supersonic flows the method was worked out
by D.L. Woodcock [42] and W.P. Jones and
K. Appa [431 . A unified treatment for
steady and unsteady subsonic and supersonic
flow fields has been formulated by L. Mo-
rino, L.T. Chen and E.O. Sucio [443]

Based on the kinematics of wave pro-
pagation as described by N. Rott [261 the
influence functions arising from the mo-
tion of the disturbance sources have been
derived in detail in two papers by A. Das
£4510461 For complete generality the vo-
lume elements and surface elements of the
moving sources are allowed to have arbi-
trary orientations in space and with re-
gard to the trajectory.

In the present paper the treatment of
flow fields of moving bodies is described,
where the inducing functions arising from
the singularity panels of the body surface
are derived directly to fulfill the kine-
matic boundary conditions at their pivotal
points. The treatment follows similar lines
as in the panel methods for incompressible
flows, but without resorting to the Prandtl
~Glauvert~transformation to account for the
Mach number effect. Some useful reference
text books are cited in [471 to [521 .

II.

pagation from Singularities in Motion

Basic Equations for Disturbance Pro-

The basic field equation of disturbance
propagation from space fixed or moving
singularities in an unbounded homogeneous
medium is derived from the laws of conser-
vation of mass, momentum and energy. If
friction and heat conduction is neglected
the field of small disturbance can be as-
sumed isentropic, thus enabling the intro-
duction of a perturbation potential. The
field equation in its most general formu-
lation appears as a wave equation and is
equivalent to the classical potential egua-
tion of unsteady aerodynamics. The equation
reduces to a simpler expression if the ne~
gative x-axis is made to coincide with the
trajectory and the assumption of small dis-
turbances is introduced.

2.1 The linearized field equation and the
perturbation guantities

The linearized wave equation in a mo-
ving reference frame can be described as
follows:

v2 1 Po? s T
¢- a—i B'Tt—z— = (to—t\)— —a—;) § (x\)-—xo-Masr\))
(2.1)
with
D2 R 2
O 3
LA I (2.2)
De2 [at s axc]

V2 as Laplace operator and § as Dirac delta
functions, defining the location of the mo-
ving disturbance source Q on the trajectory
at a corresponding time. The disturbance

function is given in the most general form

Q=

Q(t) + (V-Fi)(t) + (v-v-Gi ()

j)
(2.3)

where the three terms in their respective
order are defined as source,dipol, and qua-
drupole singularities, with Q as the re~
duced mass flux and F, and G,. as the re-
duced force functions per unit volume of
the medium.

It is often advantageous to express eq.
(2.1) in a space fixed coordinate system
with the medium at rest, containing the
complete propagating wave system in it as
shown in Fig.1. This is achieved by the
Galilean transformation

X =x - Vgt vV=y : 2=z (2.4)
Eg.(2.1) then reduces to the classical wa-
ve equation

r
1 v
2p = — = -t = - -

V2 " Py QG(tO tv aoo) 6(xv X5 Masﬁﬂ

(2.5)
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Although the left hand side of eq.(2.5)
is identical to the wave equation of a
space fixed singularity in a medium at
rest, the kinematics of radiation from mo-
ving singularities are still retained in
the delta functions, through which the pro-
pagation field is essentially modified. The
solution of eq.(2.1) or eq.(2.5) yields the
perturbation potential from which the other
field quantities can easily be derived.

Moving System
(t=t)

Medium- fixed
System

Fig.1 Wave propagation from a singularity
in uniform motion presented in a mo~
ving and a medium-fixed reference

system interrelated by the Galilean

transformation.

The pressure and density perturbations
in the disturbance field are derived from
the generalized Bernoulli equation yielding
in the moving reference system

3p (ve)2
3x ‘7?"]

(2.6a)

If a medium fixed reference system is
chosen, eqg.(2.6) simplifies to:

s=2% _Ap _ _ 1 |32
s =5, T o, ) [at * Vs

- 2
S _bdo _dp _ _ 1 [_a_¢_+(w>] 2. 60

5: Kpm a2 at 2

Due to the linearization of the propagation
problem the perturbation gquantity § also
fulfills the wave equation with a new re-
duced disturbance function o%.

2.2 The kinematics of disturbance propaga-
tion for singularities in motion

Let P_- be the momentary position of the
singularity @ moving with a constant ve-
locity V., while a disturbance signal pro-
pagating with a velocity a_ meets the field
point P at a time instant t_, then the lo-
cation of the emission point P on the tra-
jectory and the retarded time of signal
emission can be determinated frdm elemen-
tary kinematic relations.
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The kinematic relations in the dis-
turbance fields of singularities in
uniform motion at subsonic and
supersonic velocities.

Fig.2

The momentary relative orientation bet-
ween P(t ) and P_(t ) being uniquely de-
fined inospace tﬁroﬁgh the quantities r
and 1% as depicted in Fig.2, the radiatfon
quantities r ,4% and t_ are obtained from
the following e%pressigns:

1]
o

- 2 2 . - 2
(1 Mas)rv 2roMaS cosﬁgrv xS

il
(@)

rvcostt - MaSrv - rocosﬁz
(2.7)
r —

v aw(to~tv)

The solution of eq.(2.7) yields the fol-
lowing relations:

)™ 1naZein’g)
{Masc051%+( 1) 1 Ma851n g

(2.8)

r
vn 1

—Ma2
fe) 1 MaS

a2
(1 Mas)cosdz

_ n+1 2 a2
Mascosab+( 1) \/1 Ma851n vg

(2.9)

= +
cos l%)n MaS

(2.10)

(2.11)

b
i
te]
+
jed
o
(2]
<



with
n =1 for Mas <1

2 for Ma_, > 1

n
]

If
-—
~

Further relations connecting ro,ﬂ% to

r and "% are:
v v

rvn(cos1%n— MaS) = rocosmg
rvnsin 'ﬂ\\)n = rosinm?'o
_ _ n+1 s L/
r p(1-Magcos® ) = (-1) ro(1—Ma§31n@§p
(2.12)
sine = Ma_, sgin<
S [e}

For an arbitrary volume- or surface-
distribution of singularities the elements
will be shifted from the centroid along and
normal to its trajectory. In order to de-
termine all the emitting positions in space,
such that their signals reach the field
point simultaneously at a time instant t
the following derivatives are considered
next.

For elements shifted along the trajectory:

Ix
—> = 1
b -
X 1 MaS cosik
Bhv
— = O
X
o] (2.13)
arv _ cosm%
3 _
X 1 MaS cos 'v{)
3% sin
r __...\.).. e v
v 3 =
X5 1 MaS cosnk

For elements shifted normal to the trajec-—

tory:

ax _ Mag sinh, cos (y=vg)

Bhs 1 - MaS COSﬂ%

ahv

— = cos(y~-ya)

3h S

S (2.14)

ar _ siqi@ cos{y-1ug)

dhg T - Mag cos ¥

LRy - -
N v (cos1% Mas) cos (¥ ws>
v ahs 1 - MaS cosd,

Using these relations the spatial in-
fluence functions arising from the motion
of the singularities are derived below.

2.3. The spatial and temporal influence
functions arising from the motion of the
singularities

The perturbation quantities at a field
point P in space at the time instant t_ are
determined by the singularity strengthg at
the time of emission t_, the radiation dis-
tance r_ and the infludnce functions ari-
sing from the motion of the singularities.
The kinematic relations established in sec-
tion 2.2 show that the emission position
may be such that the surface and volume
elements of the singularities undergo
stretching and shifting effects and the
time sequences of signal emission and sig-
nal reception are influenced essentially
by the Doppler effect. In the disturbance
field of moving singularities one encoun-
ters four distinct influence functions.

The spatial influence functions

dlv Influence factor due to an effec~
tive stretching of the emitting
o surface- or volume-elements

dr Influence factor due to an effec~
tive shift of the emitting source
o =sink combinations
Ldr =dr (Ma,.=0)1
Vo v S

The temporal influence functions

(o3 =

R dr
v

dtv Doppler factor for signals pas-
oy = g sing through a medium fixed
o field point being emitted from

a moving source.

Doppler factor for signals
passing through a moving field
point being emitted from a mo-
ving source.

dtv
o =TF
D dto

The effective stretching factor ¢

s

For a source distribution on an elemen-
tary segment dl_ at P_ being arbitrarily
orientated to tfe trajectory, the deriva-
tion of the emission positions for all the
signals reaching the field point simulta-
neously at a time instant t_ yields the ]
effective emission length d at the loca~-
tion P, . This has been derived in detail
in £461 . Based on the location of the end-
points of the emission element, its effec-
tive stretching is given by

dl dx dh

v v " Sv
cos XS dl

O = I ——
S dlo dlO

sin Xg

(2.15)
Using the partial derivatives already com~
piled in the egs.(2.13) and (2.14) one ob-
tains the exact relations:
Mae cos ﬁbe

o = 1 + (2.16)

S —
1 MaS

cosﬂb
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or alternatively
1

1 - Ma* cosv®
e v

g = (2.17)

where Ma_=Ma,cosX, and Ma¥*= Mae/cos(xs—x )
denote tfie M3ch n@mber components alohg 3lv
and d1¥% . For X.=O the source elements lie

parallel to the"trajectory and hence

cost% flir XS=O

(2.18)

dlele

The spatial influence factors o

and ¢, due to the effective stret-
ching and shifting of the emission
elements for singularities in motion.

For source elements placed normal to
the trajectory one obtains

v v o
an 1 for XS = -2“

(2.19)

For the arbitrary sweep angle X of a two
dimensional source line, where the effect
of the tangential Mach number Ma_ sinX is
completely ignored, the effectivé motion
is Mae= Ma,cosX with «% as emission ang-
le to the %ield point.vﬁence eqg.(2.16)
yields:

dl 1

v
Ma
e

g. = —2
S dlo 1 -

for O<X>%

(2.20)

This is in complete agreement with the
classical concept of sweep effects. The
stretched emission length dl_ of a moving
element dlo having an arbitrary orientation

cos ¢
ve

to the trajectory is illustrated in Fig.3.

In the formal solution of disturbance
fields commonly given in the literature,
the stretching factor o, is incorporated
in the emission radius in the following
way

r

LI - *
ry = 5 r (1 - MaZ cosé% ) (2.21)
For singularity elements lying in the
plane of the trajectory i.e. for XS =0
one obtains
* cosi%) (2.22)

ry = rv(1 - Mas

Using an equivalent rule derived from the
kinematic relations this yields:

1
* . - 2 S 2 /2
=1 (1 Mag sin ﬁ%) (2.23)

[e]

or

1

ry = [(x~xo)2+(1—Ma§) {(Y‘YO)2+ (z—zo)zﬂ/2

(2.24)
In the real physical process of the radia-
tion field, o, is a stretching factor for
the surface of volume of the emitting ele-
ments arising solely from the kinematic
effect, and not from the compressibility
effect as is commonly assumed.

The effective shifting factor CIN

If a source-sink combination is in mo-
tion, the singularity elements are dis-
placed from the trajectory of their cen-
troid. Thus, their relative orientation
with respect to the field point differ from
each other. Hence for the emitted signals
reaching the field point at a time t_ the
corresponding emitting points, as dePived
from the kinematic relations, undergo re-
lative shifts compared to their original
displacement from the centroid. If dm_ is
the displacement in space of the source-
gsink elements at P_, the difference in their
emission radius fofr the signals reaching
the field point P at a time instant t_can
be derived easily by using the partia
derivatives compiled in eq.(2.13) and eq.
(2.14) and following the same line as in the
previous section. This yields

dr\) cos '%
dm = T - Ma. cos® (2.25)
[e} S v

where & is the angle between the emission
radius ¥ and the source-sink axis dm_ at
the emission point P . The shifting Rffect
of the source-sink combination is clearly
displayed in Fig.3. The prescribed source-
sink arrangemant placed at P would have
the following difference in émission radius
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2
T = cos¥ (2.26)
MaS=O
Hence the shifting factor ¢_ due to the
motion of the singularity amounts to:
o‘R = d_r\)_.. = 1
drvo 1—Mas cosﬁ%
(2.27)

This is a purely kinematic effect and is
formally accounted for in the classical
treatment where partial derivatives of the
equivalent expression for r¥ as given in
eq.(2.24) is carried out fo¥ the singula=-
rity locations at PO.

The Doppler-Factor o

p and cg

When signals are emitted from moving
singularities the time sequence for their
passing through a field point in space
usually differs from the time sequence of
emission of the signals. The ratio of the
time sequences dt_ of emission and dt_of
reception can easily be derived from Lhe
partial derivative of eq.(2.10) with re-
spect to dt_ and is generally valid for
a fixed or moving field point. As already

derived in detail in r453 one obtains for
a medium fixed field point:
dt
6. = v = 1
D dt i _ 1 - Magcos
MaE=O v

(2.28)

For a moving field point, with its velo-
city component being Ma, in the P_PP_ -plane,
the time derivative of &€g.(2.10) gieids the
expression

Ma_Ma
+ S E

—Ma 2
1 MaS 1

v 1 cos(d%+;%)

+

- 2
MaS

MaS(cosﬁh~Mas)+MaE§cosﬁi—MaScos(¢t+{%)g_

+

(1—Ma§) (1-Ma_, cos )
v

S

2=
MaSMaE

(1-Ma§) (1-Ma

sinv%) sin(x%+@~v)

(2.29)

gcos 1%))

The physical process involving the influ-
ence factors o and ¢f is depicted in Fig.4.
So for the frequency ?elation at reception
and emission the simple relation holds:

. o¥
wg b (2.30)
For Ma 0 eq.(2.29) reduces to o* o
For field points accompanying the moving re-
ference system eq.(2.29) yields cg =1, for

which W wg .

w

F o
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Fig.4 The temporal influence factors o

and o¥f due to the changed time se-
quence of signals passing through

a fixed or moving field point in re-
lation to the time sequence of the
emitted signals from singularities

in motion.

III. The Inducing Functions and Pertur-
bation Quantities in the Radiation Field
of Two- and Three-Dimensional Singulari-
ties in Motion.

The inducing functions in the radia-
tion field of space fixed unsteady singu-
larities in an unbounded homogeneous medium
at rest are known from the solution of the
classical wave equation. For unsteady dis-
turbance sources moving slowly at a low
Mach number, one can neglect the effect of
the motion and treat the problem as a guasi
-steady case accounting for the correspon-
ding relative positions of the sources and
the field points at different time instants.
With Mach number increasing the spatial and
temporal influence functions arising from
the motion of the singularities become in-
creasingly significant. The resulting in-
duction at a field point then depends on
the Mach number of the sources and the re-
lative positions in space of the emitting
elements, whose signals arrive simulatanous-
ly at the time instant t_. The radiation
fields of some basic disPributions of mo-
ving singularities is illustrated below,
first for two and three-dimensional cases.
The treatment will then be extended to
moving bodies of arbitrary shapes.



3.1 Radiation process and inducing func-
tions due to moving source lines and source

surfaces.

If a source line of infinite length set
at an arbitrary angle X to the trajectory
is in uniform motion with a Mach number
Ma., subsonic or supersonic, then the emis-
sion points of the signals arriving at a
field point P simultaneously at a time in-
stant t, can be determined from eq.(2.11)
as shown in Fig.5. The position of the
source line being known at time t _, the
following simple guide line relatfons de-~
fine the emission lines Lv looked for:

Ma.r_ = Ma (3.1

This equation represents a hyperbola for
Ma.<1, a parabola for Ma,=1 and an ellipse
fo¥ Ma_>1, with the fielg point as the fo-
cal point of these curves, situated in the
plane of the source line. For arbitrary
field points in space the emission lines
are the envelopes of these basic curves.

Lo(to)

Ly

X1

Fig.5 The emission lines I  for signals
arriving at a field ﬁoint P(x,0,0)
at the time instant t_, originating
from infinite line sofirces of dif-
ferent sweep angles X and Mach num-

bers Mas.

For source lines set at an angle X to
the trajectory the emission lines I. are no
longer symmetrical about the x—axisvthrough
the field point, and for Mas>1 the length
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of the effective source line lying within
the Mach fore cones of the field point
will be altered essentially. If a x;-axis
is chosen passing through P and normal to
the source line, then all the emission
lines reveal complete symmetry about it.
The solution procedure in the classical
literature resorts to the use of this pro-
perty.

In the sonic and supersonic case with
Ma_. 21 a similar procedure would violate
th% physics, as the signals reaching P
from the emission lines Lv would then be
attributed to source elements lying out-
side the fore-cone as can be seen from
Fig.5. Thus, the resolution of the motion
Ma, in normal and tangential components
tosthe source line, as is done in classi-
cal treatment is no more than an artifical
means to arrive at the correct solution va-
lid only for infinite source lines. For
finite source lines with varying source in=-
tensity such a procedure will violate ex-
tremely the physics of disturbance propa-
gation. The radiation phenomena from mo-
ving sources as already mentioned in sec-
tion 2, will give rise to the spatial and
temporal influence functions. As the re-
lative positions in space of the source
line, of the field point, and of the emis~
sion lines are known all the influence fac-
tors Ugr © and o are completely defined.
According Yo egs.X2.20), (2.27) and (2.28)

1

o =

S 1 - Mae cosﬁce ,

R T T oM 1 cos (3.2)
ag 5oy

o = !

D 1 - MaS cos:%) R

where Ma = Mascosx and X, = X , the sweep
angle ranging”from~0 to n?Z. For an infi-
nite source line moving longitudinally but
with the source elements placed perpendi-
cularly to the trajectory (X ,=X=T/2) their
stretching factor reduces to“o_=1 for sig-
nals meeting any field point ih space. If
in contrast, a source line moves in the
longitudinal direction but with the source
elements aligned to it (X =0), as occurring
in the axisymmetric case, then the propaga-
tion process exhibits some remarkable pro-
perties in the region close to the trajec-
tory (x-axis). Egs.(2.18) and (2.22) show
that the effective emission radius for sig-
nals meeting a field point at P(x,0,0)
simply becomes

Ty
rj = = = T (3.3)
S
with 1% = 0 or v . This means that the

Mach nimber dependency of the inducing
functions, contained essentially in r, and
0, as given in egs.(2.8) and (2.18) drops
olit exactly in this case. This is the true
physical explanation of the slender body
effect, as is exactly proven from the kine-



matics of the radiation process, without
resorting to any transformations or assump-
tions as are commonly called on in the lit~
erature. The validity of eq.(3.3) is illus-
trated in the three examples shown in Fig.6
comprising subsonic and supersonic motion
of the sources.

R_B__&
Ma e K0 K e
P
R Mas R R
C) O
n l Cg=2
(Mag=05) Fo=2
® o & Bmns
MQS -I—-I_"',:z/j-—
o
= B R” f{ Rz
Ma.=2 | Os=Vi|_ _ Os =1
9 g -—J$F@<~—\Q=7——— g
o

Fig.6 The radiation process for moving
source elements and field points
on a single trajectory leading to
the exact cancellation of the Mach

number effect. (rv = rv/ro)

In case of an arbitrary singularity
line the perturbation quantities at a field
point in space and at a time instant t
can easily be derived, when the inducigg
function of the emitting singularities and
their strengths at the emitting time t in
relation to the source elements that hive
actually passed through them along the true
trajectory are known.

For an infinite singularity line,with
arbitrary sweep angle X and carrying a
constant source distribution, their resul-
tant inducing function is obtained simply
by integrating the expression 1/r* for all
the emission elements, whose signgls reach
the field point at a time instant t . Ac~-
cordingly for MaS<1 ©

(3.4a)

I o= - S Y2 252
IO 1n [(x xo) + Bez ]+ C

and for Mas>1

= 1
I =
o) 2se

(3.4b)

where X,¥7,Z denote the coordinate system
with the X-axis normal to the source line
L_ and B2 = |1-Ma2]| . To perform the inte-
gfation 6f the ingucing functions over the
emission lines L_ , as shown in Fig.5 for-
mal use is made Of the relation

LY,
® = - = ot (1oMalainZagt) /2
ry rv(T Maecosz%e) = ro(1 Mae31n ﬂb)

(3.5)
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For a line segment Al containing in-
finite singularity lines with constant
strengths all over, the inducing function
at a field point is given by

+A1/2

T — - o— 2 222 >

I, = in {(x %) 2+ 827 }dxo (3.6)
—31/2

for MaS<1 and

T (3.7)

+A1/2

- - 1 %
IS = 26e J. dxo for Mas>1

-A1l/2

with (x +Ax ) £ (x-82) and Ax_=AX_/cosX af-
firming that the line segmen% and the
source lines lie in the Mach fore cone of
the field point P(x,y,z), formed with the
source line Mach number MaS>1. Hence for
Ma_.<1 one obtains

S
AL
2
= et = il =2 202
IS = -[(x—xo+ Axo) in (x—xo+ Axo)+Bez 2}
= __ A
X ===
ATl
) F-x o+ 0%, )] 7
- 2B z |arc tg%—————-————f
e 8 Z
€ A- =-—é..]_1
%5 2
(3.8)
and for Mas>1
Al
2
I = - A AX
S 28 [o] (3.9)
e
= _ AL
AXO——“_z——

These expressions of the inducing functions
given by the egs.(3.8) and (3.9) are valid
for two dimensional steady disturbance
fields . Equivalent expressions for the
unsteady cases can be derived in a similar
way. For treating the disturbance fields of
arbitrary singularity distributions in
space the inducing functions of the indi-
vidual surface elements are to be determi
ned.

Now considering an element of the
source surface in space moving uniformly
with Mach number Ma,, the trajectory being
along the negative X-axis and the surface
inclination to it being X , the kinematic
relations of Sec.2 are used to define the
relative locations of the source surface
at P_(t ) and the emission surface at
P (t°) Por signals reaching the field point
PYat’a time instant t_. The radiation pro-
cess from the moving Source surface is dis-
played in Fig.7.



Fig.7

The spatial influence function o
of a moving surface singularity
element having arbitrary orienta=-
tions in space and with regard to
the trajectory.

The stretchlng effect of the emission

segment l arises through the addition of
all the partlal elements 61 contributing
their signals to the field p01nt P. From

eq.(2.17) one obtains
lv 1
o = =— = (3.10)
5 1o 1 - Ma* cos*
e v
with Ma* as the component Mach number along

the surface l , having an angle'& to the
emission radius r, . If one applles the
equivalent rule using the source surface
position at the time instant t_, the stret-
ching effect of the segment 1 ~“can be in-
corporated into the effective emission ra-
dius:

2]

*:.._y_: ~-Mg¥ = ! _*2'21/2
¥ rv(1 Maecosﬁﬁ) ro(1 Mae51n§®

0

(3.11)

It is often advantageous to base the de-
rivation of r¥% on the original surface ele-
ment 1 . This is achieved by shifting the
surface element 1 parallel to itself along
the height H of P°such that the centroid

of the surface element yields the effec-
tive emission radius r* according to the
following relation:

w1l
* = — Ma2 sin2.g /2
¥ rl(1 MaZ sin d%) (3.12)

The shift as illustrated in Fig.7 amounts
to

AH = Masrv

{31nXS - cosXq tg(XS—XV)}
(3.13)
For surface elements with X =0, lying in
the plane of the trajectory " no shift AH of
a panel is neccessary and the effective
emission radius r¥ is identical with the
values given by Prandtl-Glauert trans-
formation. For surface elementlying normal
to the trajectory with X_ = 7/2 the stret-
ching of the emission element vanishes as
is conflrmed through eq.(3.11) and eq.(3.12)
yielding r =r = r'. In this case the
Prandtl-Gl3uert” transformatlon would vyield
an effective emission radius r¥* differing
largely from ¥ and r' and hence does not

conform to thevphysical process.

3.2 Inducing Functions due to Moving Source
and Doublet Panels

Having established the basic radiation
process and the inducing functions of source
surface elements it is a simple matter to
derive the total inducing effect of a mo-
ving source or doublet-panel at a field
point in space. A moving source panel 1-2-
3-4 having arbitrary orientation to the
trajectory induces a perturbation potential
at a medium fixed field point P in space.

Geometrical relations used in the
calculation of the inducing func-
tions of a moving source panel for
a given field point in space.

Fig.8

The shape of the panel and its geome-
tric relations to the field point is com-
pletely defined and H is the vertical height
of P from the plane of the panel surface.
The local reference system of the panel
surface will be denoted by the coordinates
X1 ,Y1,21_with the footpoint of H as the
origin., R_ is a normal to the correspon-
ding panel edge as shown. An elementary
surface of the panel is denoted as
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dF = RjdR;do (3.14)

If the panel surface is displaced parallel
to itself to the height H, , so that the
effective emission radius of the centroid
is matched to the exact value given by the
radiation process, then the radial dis-
tance of an element from the field point a-
mounts to

2 2

r = Ri+ Hy (3.15)

o

and the effective emission radius of the
element becomes

2 2 2 2 2
rt = |Ri1(1-Ma; sine) + g H; (3.16)

—
with ST =J1-—Ma J1—Ma cos X

For panel surface containing the x-axis ie.
for X=0 one has Ma,, = Ma, and H; = H and
thus rﬁ reduces to the uSual expression
with the panel surface on the body.

The above considerations suggest that
the inducing function of a source panel for
a given field point can be presented in the
general form

o]

Carrying out the integrations with respect

R;dR;d0

(3.17)
R1(1-Ma sin e) + B 2y JV

to R and ® one obtains
n2
T =§ .B_]_n '(1_§)+J(12_g§1+_(§i9.}.)‘
S A A A A
n
nl
n2
+Ell arc tg D/A : 1 - B/A
\(c/a)-(B/n)? c+p'
n l+ =
A
ni
na2
+ ZE:Hl[arc tg(ST-thY] (3.18)
n ni
where A _ 1 - Ma2 cos?A
n T n
= 2 ] i
Bn MaT Rncos/\n 51nﬂh
- B2 _ 2 wipn2
Cn Rn(1 MaT sin An) (3.19)
= g2 12
Dn ST H1

Following the same procedure as in [31] the
panel geometry can be defined in terms of
the corner point coordinates (xnl,ynl),

Yn )} and the intersection point
5) of H on the panel surface:

J 2 y2!
dy = Yixp,= % )% {yg,- vy,)
X_, =X v_.-y
S = sinx_ = ng nt H Cn = CcosA_ = né nl
n n n
R, = [(x - X)) Cp ot ygm vpy) sn]
s
tgx= — (3.20)
S
Loy =~ = xS, + (v, - y,)C
1, = “(xp,m %S, + (yp,m ¥IC,
For Ma,=0; A = 1; B =0; C = R?2; D = u?

and consequen%ly eq. (3.18) reduces exactly
to the expression given by Hess and Smith
£313.

For a moving doublet panel the inducing
function is derived in a similar way by re-
sorting to a contour integration along the
panel sides.

Geometrical relations used in the
calculation of the inducing func-
tions of a moving doublet panel for
a given field point in space.

Fig.9

With the source-sink axis perpendicular to
the panel surface the derivative of the
source function of eq.(3.17) with respect
to Z2; or H; 1eads to

HiR;dR;d06
3
R (1-MaZ sin’e) + BéH{]b

(3.21)
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The integration is straight forward, yiel-
ding for the inducing function of a doub-

let panel:
n2
J% -3

ID = arc tg =7 3

c_ (B J _ 2B, (C+D)

o JA @ V- Ty
nl

n2

+E l:arc tg (BT . tg@):l (3.22)

n ni

with A,B,C and D being identical with the
expressions of eq.(3.19).

Fig.10 Doublet distribution and the equi-
valent horse-shoe vortex system
for a lifting surface.

3.3 Method of Solution of Perturbation

Fields due to the Motion of Arbitrary Bodies

The solution of the perturbation field
of an arbitrary body in motion can be ob-
tained by applying the integral method to
the linearized wave equation in the moving
reference frame or to the linearized field
equation based on the perturbation poten-
tial. Using Greens theorem the solution is

obtained in the following form for Mas<1

1 S 1 3 1
— |= aFr + — T (—
4‘”‘5“5‘1_* o 4r jj D an (r*)dFo
v v
By Fy

¢ (P)

(3.23)
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with S the source distribution and D the
doublet distribution. The kinematic boun-
dary condition at the field points on the
surface is

2
an

(P) (3.24)

Dividing the body surface into panels of
surface areas F the inducing functions
of the panels on field point can now be
introduced into eq.{(3.23) in the follow-

ing manner:

N
2:'*-v b ar % +
T el ol 4mv
r* )ij ) ©
. A Y
j=1 ]
M
+§;-H v 3’%(1)$ ar —Dj——-ﬁ-ef‘”
i 3n rt ik o 4an iv,
k=1 k
(3.25)

The integral expressions for each panel
element has already been evaluated as Is
and I_ in egs.(3.18) and (3.22).

The bracketed terms being purely func-
tions of the body geometry i.e. of the re-
lative locations of field points and the
panels, they can be computed once and for
all.

Denoted as inducing coefficients A,
and B they lead to a system of N + M J
equatlans for the same number of unknowns:

N M 3
> > > o
ol ST WP § :ni°BikYi = TNy
j=1 k=1
(3.26)
Here X, and Y. denote the unknown source

and dotiblet s%ngularities. The whole pro-
cedure then follows the same line as the
classical panel method. Having determined
X, and Y, all the aerodynamic coefficients
ofi the bddy or in the field around the bo-
dy can be determined without difficulty.
The panel method for supersonic flows can
be dealt with in a similar way.

IV. Conclusion

In the panel method outlined in this
paper a direct treatment is formulated for
arbitrary bodies in compressible flows -
subsonic and supersonic . In order to in-
corporate the effect of the translatory
motion of the panels the inducing coeffi-
cients are rederived including Mach number
terms. The underlying physical principles
comprising the basic kinematics of distur-
bance propagation are outlined extensively.
The effects due to the Mach number origi-
nate from the spatial and temporal stret-



ching effects in the process of emission
and propagation of the disturbance signals.
The resultant inducing functions of source-
and doublet panels for field points in
space are derived in closed form. The cal-
culation of the perturbation field by
using integral methods follows the same
line as the panel method for incompressib-
le flows. In the limit of Mach number ten-
ding to zero, all the influence coeffi-
cients reduce to the classical expres-
sions known from literature, thus inclu-
ding the standard panel method as a spe-
cial case.
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